Contents

1 Welcome to COPA-DATA help ... 4

2 MS Azure .. 4

3 Configuration of MS Azure .. 5

4 Configuration in zenon ... 12

5 Evacuate SQL archives .. 13
 5.1 SQL evacuation in zenon .. 13

6 Saving data and reading it in again ... 14
 6.1 Process Gateway: Saving data in MS Azure 14
 6.2 zenon AzureDrv driver: Read data from MS Azure 22

7 zenon Analyzer - Linked MS Azure Server ... 26
1 Welcome to COPA-DATA help

ZENON VIDEO TUTORIALS
You can find practical examples for project configuration with zenon in our YouTube channel (https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP
If you cannot find any information you require in this help chapter or can think of anything that you would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT
You can receive support for any real project you may have from our customer service team, which you can contact via email at support@copadata.com.

LICENSES AND MODULES
If you find that you need other modules or licenses, our staff will be happy to help you. Email sales@copadata.com.

2 MS Azure
MS Azure is the description for the online platform on which the cloud services can be rented (Microsoft Azure Cloud). This can be used for zenon and zenon Analyzer.

MS AZURE SERVICE BUS SAVE TYPES
The connection can be established with a Queue or an Event Hub:
- MS Azure Queues:
Process Gateway: In an MS Azure Queue, data is written to the memory in the order in which it arrives. The queue is emptied again when reading and emptied according to the settings. Data always lands in a defined queue from which it can be read again. If there is no Internet connection when writing, no data is written. These are also not cached or entered later. If there is no Internet connection when reading, this is not displayed. As soon as there is a connection again, all data present in the queue is read and then the display is updated.

SQL Export: Data is written to an archive queue. The cloud-based service Archive Worker writes the data to a cloud-based SQL database. If there is no Internet connection, the data is cached locally in the Runtime folder and uploaded in the next export cycle once there is a connection.

MS Azure Event Hub:
An MS Azure Event Hub writes data that has been received, subdivided in up to 16 partitions. This write process is quicker than writing to a Queue. zenon can use the Process Gateway to write data to an MS Azure Event Hub, but cannot read from it.

USE IN ZENON

In zenon, MS Azure serves as:

- SQL evacuation location:
 zenon archives can also be evacuated to MS Azure by means of SQL export.

- Cross-location exchange of data:
 Variables can be written to MS Azure Queues using Process Gateway. They can be read in again with the zenon AzureDrv driver. In doing so, no extra ports need to be configured for the incoming data.

- Data storage location for third-party applications:
 The zenon Process Gateway can also write data to MS Azure Event Hubs. This data can thus be provided for other applications. However, it cannot be read again by zenon.

USE IN ZENON ANALYZER

In zenon Analyzer, an MS Azure SQL database can be used as a linked server.

3 Configuration of MS Azure

The configuration depends on the use in zenon.
Configuration of MS Azure

MS AZURE

In this section, you receive information on configuration steps in MS Azure when using zenon. You can get information on the general configuration of MS Azure and databases in MS Azure from the Microsoft MS Azure help.

For use with zenon, you need the following in MS Azure, depending on how it is used:

- MS Azure SQL Server
- An assigned database
- The server name and Connection String of the database
- The Namespace with
 - Queues
 - Event Hubs
- The **Archive Worker** cloud service

Zenon archive can be evacuated to MS Azure and read back again. Reading in can be via zenon Analyzer.

To evacuate archives and read them in again:
1. Create an SQL server and corresponding database in MS Azure, in which the data is to be saved.
2. Ensure that the Public IP of the accessing computer is included in the Allowed IP Addresses of the server.

3. In the options of the newly-created database, you have the possibility of copying the Connection String. To do this, click on View SQL Database connection strings.

You need this Connection String later for the configuration file (on page 13) ServiceConfiguration.Cloud.cscfg.
zenon needs the **ADO.NET** Connection String.

Connection Strings

ADO.NET:

```csharp
Server=tcp:database.windows.net,1433;Database=Copa;User ID=Copa;Password={your_password_here};Trusted_Connection=False;Encrypt=True;Connection Timeout=30;
```

ODBC:

```sql
Driver={SQL Server Native Client 10.0};Server=tcp:database.windows.net,1433;Database=Copa;Uid=Copa;Pwd={your_password_here};Encrypt=yes;Connection Timeout=30;
```

PHP:

```python
Server: database.windows.net,1433

$nSQL = 'Table1';
$nSQL = 'SELECT * FROM $nSQL';
$conn = new PDO ( '{sqlsrv:server = tcp://database.windows.net,1433; Database = Copa; Data Source=database.windows.net;Trusted_Connection=true;Encrypt=yes;Connection Timeout=30;}',$nSQL,'{your_password_here}');
```

JDBC:

```java
jdbc:sqlserver://database.windows.net:1433;database=Copa;user=Copa;password={your_password_here};encrypt=true;hostnameInCertificate="* database.windows.net;loginTimeout=30;
```

1 Allow the connection in firewall rules
4. Create and configure a new namespace in the Service Bus menu. You need the Messaging type. This cannot be subsequently changed. Further Shared Access Keys can subsequently be created. You need this Connection String later for the configuration file (on page 13) ServiceConfiguration.Cloud.cscfg.

Note: Ensure that each computer that writes to the Queue has write authorizations.

Access connection information

Use this connection information to manage namespace ‘Corp’. You can also use authorization policies configured here to connect to all entities in this namespace.

<table>
<thead>
<tr>
<th>NAME</th>
<th>CONNECTION STRING</th>
</tr>
</thead>
<tbody>
<tr>
<td>RootManageSharedAccessKey</td>
<td>Endpoint=https://corp.servicebus.windows.net/SharedAccessKey/Name</td>
</tr>
</tbody>
</table>

ACS
Looking for ACS connection information? Please see here for more information regarding using ACS with Service Bus.

Manage Access Keys

When you regenerate your storage access keys, you need to update any virtual machines, media services, or applications that access this storage account to use the new keys. Learn more.

STORAGE ACCOUNT NAME
portalv

PRIMARY ACCESS KEY
9/nc06eg [regenerate]

SECONDARY ACCESS KEY
yW0b9HN [regenerate]
6. Create a new cloud service. In doing so, the Archive Worker is created. You can find the required files in the following folder: %ProgramData%\COPA-DATA\zenon8.20\CloudService.

7. Create the desired Queue or the desired Event Hub.
If a zenon archive is to be evacuated, this Queue must have the name `archivequeue`. It is automatically created with the Archive Worker.

Recommendation: To configure the zenon SQL evacuation, use the supplied zenon Package (see evacuate SQL archives (on page 13) section).

4 Configuration in zenon

The configuration in zenon or zenon Analyzer depends on the task:

- Evacuate SQL archive (on page 13): zenon archives are evacuated to MS Azure by means of SQL.
- Save data and read it in again (on page 14): Variables are saved in Azure in a Queue or an Event Hub using zenon **Process Gateway** Data from a Queue is read back into zenon using the zenon **AzureDrv** driver.

In zenon, you generally need the following information from MS Azure for configuration:

- Connection String (server connection name)
- Name Queue or Event Hub
- Password
Note: Ensure that the necessary ports in the firewall are unlocked.
Default: 1433

5 Evacuate SQL archives

There is a configuration package available on the zenon installation medium to configure the evacuation of archives.
Path: %ProgramData%\COPA-DATA\zenon8.20\CloudService

It contains the following files:
- AzureArchiveCloudService.cpkg (package)
- ServiceConfiguration.Cloud.cscfg (Configuration file)

Configuration:
- There must be a **Queue** with the name **archivequeue** in the **Namespace** on the MS Azure server.
- The following must be entered in the zenon configuration file:
 - Path to the Service Bus (**Connection String**), in which the **Archive Queue** is automatically created
 - **Connection String** to the Azure SQL database
 Attention: A password must be provided
 - ArchiveStorage and Diagnostics: **Connection String** to a Table Storage in MS Azure. Can access the same Table Storage.
- Configuration of the SQL evacuation in zenon
 - **Save** tab for **archive properties**:
 Write: Entry of the Connection Strings to the MS Azure Service Bus in the **Use MS Azure service bus for writing**.
 Read: Establish connection to the MS Azure database using the **SQL database** option.

5.1 SQL evacuation in zenon

If the **Use MS Azure Service Bus for writing** option has been activated for the SQL evacuation of an archive, all archive values in the Azure Service Bus Queue are added to the Azure service bus queue with the name **archivequeue**. This must exist in the MS Azure-Namespace of the configured connection. The MS Azure connection name is entered in the input field under the option.
CONFIGURATION

In MS Azure, there must be at least one instance of an **AzureZenonArchiveWorker** cloud service running, which receives the archive values from the queue with the name **archivequeue** and inserts these into the MS Azure SQL storage. The table format corresponds to the classical SQL evacuation of an archive.

The cloud service must be displayed manually with the **AzureArchiveCloudService.cpkg** deployment package via the MS Azure configuration user interface. You can find the package in the following folder: `%ProgramData%\COPA-DATA\zenon8.20\CloudServices`.

Settings:

- **Zenon.ArchiveServiceBus.ConnectionString**: Corresponds to the MS Azure connection name in archive configuration.
- **Zenon.ArchiveSQLServer.ConnectionString**: Denotes the name for the MS Azure SQL storage destination.

PROCEDURE

The archive files are read via an OLEDB connection and SQL SELECT statement. The OLEDB connection name therefore generally shows the same MS Azure SQL-Storage as in the output connection name (**Zenon.ArchiveSQLServer.ConnectionString** in **AzureZenonArchiveWorker**).

6 Saving data and reading it in again

Data can, for example also be saved throughout locations using the MS Service Bus. To do this, it is uploaded using the zenon Process Gateway and downloaded again using the AzureDRv driver. One of the advantages is that no exceptions need to be configured in the firewall when downloading. It is also possible to provide data for third party applications.

Two settings are possible for the target in the **Namespace**:

- **Queue**: Data can be saved and called up again.
- **Event Hub**: Data is saved for third-party applications. These can no longer be read by zenon or zenon Analyzer.

6.1 Process Gateway: Saving data in MS Azure

In Runtime, the **AccessAzure** module in **Process Gateway** can be used to upload data to MS Azure.
Saving data and reading it in again

The Process Gateway uses the AccessAzure.dll to establish a cyclical connection to MS Azure. Services in MS Azure supported by Process Gateway:

- Servicebus Queue
- Event Hub
- IoT Hub

In addition, the Process Gateway can receive data from the IoT hub via Cloud2Device-Message.

Data from the Queue can then be obtained with the AzureDrv driver from MS Azure and integrated into zenon processes. IoT Hub content can only be read by the driver if it is transferred to the Servicebus Queue. This can be implemented with the standard services of the MS Azure Cloud.

Data from an Event Hub is for third-party applications and can no longer be read by zenon.

DRIVER COMMUNICATION

To read the values from the Servicebus Queue, the AzureDrv driver establishes a connection to the service bus Queue with the configured name and takes all messages received from it. These messages are unpacked and the online values contained therein are allocated to the variables. The key for this is the **Symbolic address**.

All messages that are already in the queue when the connection is first successfully established are loaded and discarded. It is always only the current values that are displayed.

This means:

Each driver instance on each computer has its own Queue as an input signal.

Example

The Servicebus Queue for the computer MYSERVER1 and the configured prefix onlinedata is called the following in MS Azure: onlinedata_myserver1.

Numeric (DOUBLE) and alphanumeric (STRING) values are supported. The time stamp and the system status bits are transferred to the target variable.

Information

You can find details on configuration and formats in the Process Gateway manual in the MS Azure section.

CONFIGURATION IN THE PROCESS GATEWAY

Configuration dialog for MS Azure connection via Process Gateway.
VARIABLES

In the **Variables** group, you configure the variables whose values are saved by zenon in an MS Azure Service Bus.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available in Scada</td>
<td>Displays all variables available in zenon. With multi-project administration, variables from active projects can be selected.</td>
</tr>
<tr>
<td>Projects</td>
<td>List of all available projects. The standard project is marked with an *.</td>
</tr>
<tr>
<td>Variables</td>
<td>List of all variables of the selected project. List can be sorted; multiple selection is possible. Hint: Double clicking on the variable moves it.</td>
</tr>
<tr>
<td>Button ></td>
<td>Selected variables from the list of variables are moved to the Exported into MS Azure list.</td>
</tr>
<tr>
<td>Button <</td>
<td>Selected variables are removed from the Exported into MS Azure list.</td>
</tr>
<tr>
<td>Exported into MS Azure</td>
<td>List of the variables that are written to the MS Azure Service Bus by the Process Gateway. These are displayed with name (Points) and communication Direction. Double click on an entry to reverse the direction of communication. The key for the values in MS Azure is always PROJECTNAME#VARIABLENAME.</td>
</tr>
</tbody>
</table>

Points:
The name consists of:
- Project name
- # (as separator)
- Variable name.

Direction:
Shows the direction of communication:
- *read only*
- *write only*
- *read/write*
Saving data and reading it in again

### Parameter	Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default: read only</td>
<td>Change the direction by double-clicking on the variable.</td>
</tr>
<tr>
<td>Note: Only linked variables can be described.</td>
<td></td>
</tr>
</tbody>
</table>

MS AZURE CONNECTIONS

All target connections in which the current values of the selected variable are to be inserted in MS Azure are to be entered into the **MS Azure Connections** group.

In doing so, the current variable values are added to all existing connections at the same time.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of MS Azure connections</td>
<td>Lists all connections to MS Azure configured. Each connection consists of the connection name (MS Azure Connection) and the Service Bus Queue Name.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creation of a new connection with the button New...</td>
</tr>
<tr>
<td></td>
<td>A selected connection can be amended with the Edit... button.</td>
</tr>
<tr>
<td>MS Azure Connection</td>
<td>MS Azure connection address.</td>
</tr>
<tr>
<td>Service Bus Queue Name</td>
<td>Name of the queue in the MS Azure service bus.</td>
</tr>
<tr>
<td>New...</td>
<td>Opens dialog to configure the MS Azure connection.</td>
</tr>
<tr>
<td>Edit...</td>
<td>Opens existing connections to configure the MS Azure connection.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes the selected MS Azure connection from the list.</td>
</tr>
</tbody>
</table>

MS AZURE SETTINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity period</td>
<td>Time interval in which the current values of the selected variables are written as an image to the MS Azure Service Bus queue.</td>
</tr>
</tbody>
</table>
Parameter | **Description**
---|---
| If the value of a variable changes during this this interval, the value change is immediately transferred to the MS Azure queue. Default: 5 s |
| **HTTP Proxy Domain** | Address of the proxy server in the network. |
| **HTTP Proxy User** | Input field of the user name for login on the proxy server. |
| **HTTP Proxy Password** | Input field for password for login on the proxy server. **Note:** Input is shown with dots - even during entry. |
| **Confirm HTTP Proxy Password** | Input field for the confirmation of the password for login on the proxy server. **Note:** Input is shown with dots - even during entry. |

NAVIGATION

Parameter	**Description**
OK	Applies settings and closes the dialog.
Cancel	Discards all changes and closes the dialog.
DIALOG IN THE EVENT OF INCORRECT ENTRIES

Configurations of the proxy server are validated. A corresponding warning dialog is shown in the event of an incorrect configuration.

Attention

.NET 4.5 must be installed on the computer in order for the proxy settings to work.

CONFIGURATION OF CONNECTION TO QUEUE OR EVENT HUB

In the connection dialog, you stipulate whether the connection to a Queue or an Event Hub is made and how this is addressed.
Configuration dialog for the connection to **MS Azure**:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Azure Connection</td>
<td>MS Azure connection address.</td>
</tr>
<tr>
<td></td>
<td>Note: You can read and copy this address in the Azure administration</td>
</tr>
<tr>
<td></td>
<td>portal under Manage Connection Strings of the desired Servicebus</td>
</tr>
<tr>
<td></td>
<td>Namespace.</td>
</tr>
</tbody>
</table>

[Image of MS Azure Connection Settings dialog]
Saving data and reading it in again

Parameter

Service Bus Queue / Event Hub Name

Name of the **MS Azure Service Bus** queue or the **Event Hub**. Selection by means of radio buttons.

Note: Only characters that appear in the name of a MS Azure Service Bus Queue or in an Event Hub are permitted. Use simple, short and meaningful names. Avoid special characters, language-specific letters and blank spaces.

Service Bus Queue

The name of the **Service Bus Queue** comprises:

- A freely-configurable prefix
- An underscore (underscore)
- The NETBIOS computer name (without domain name suffix) in small lettering

If the name does not yet exist in the Namespace a Queue with this name is created.

Requirement: The corresponding rights are present.

Event Hub

- **Message format:** Select in the drop-down list in the **Format** option.
- **Event Hub Name:** Name of the Event Hub in the MS Azure Service Bus

Note: Grayed out if the IoT Hub option is activated as the type of communication to MS Azure.

Queue

Communication to MS Azure via **Service Bus Queue**.

- **Active:**

Event Hub

Communication to MS Azure via **Event Hub**.

- **Active:**

 The connection is established using the name of the **Event Hub**. Selection of the message format using the **Format** option.
Saving data and reading it in again

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IoT Hub</td>
<td>Communication to MS Azure via IoT Hub.</td>
</tr>
<tr>
<td></td>
<td>- Active: Sending of actual values and the receipt of messages via IoT Hub. Entry of the Device-Connection Strings in the MS Azure Connection input field.</td>
</tr>
<tr>
<td>Format</td>
<td>Message format for connection via Event Hub. Select from drop-down list:</td>
</tr>
<tr>
<td></td>
<td>- XML</td>
</tr>
<tr>
<td></td>
<td>- JSON</td>
</tr>
<tr>
<td></td>
<td>- BOND (compact binary)</td>
</tr>
<tr>
<td>OK</td>
<td>Applies settings and closes the dialog.</td>
</tr>
<tr>
<td>Cancel</td>
<td>Discards all changes and closes the dialog.</td>
</tr>
</tbody>
</table>

Information

The Service Bus Queue Name can be freely configured. This queue is automatically created in MS Azure during the first communication to MS Azure.

For each computer that calls up data from MS Azure, use the AzureDrv driver to create a separate MS Azure Connection.

6.2 zeron AzureDrv driver: Read data from MS Azure

The AzureDrv driver gets data from the MS Azure Service Bus for processing in zeron.
CONFIGURATION

Configuration dialog of the connection to the MS Azure service bus:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Connection type]</td>
<td>Selection of the connection type via radio button.</td>
</tr>
</tbody>
</table>
| | - **Queue**
| | Communication to MS Azure via Service Bus Queue. The connection is established using the name of the Service Bus Queue. |
| | - **Event Hub**
| | Communication to MS Azure via Event Hub. The connection is established using the name of the Event Hub. |
| | - **IoT Hub**
| | Communication to MS Azure via IoT Hub. Sending of actual values and reception of messages via IoT Hub. |
| MS Azure Queue Connection | Input of the name of the connection to the MS Azure |
Saving data and reading it in again

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servicebus</td>
<td>You can read and copy these connection names in the MS Azure administration portal under Manage Connection Strings of the desired Servicebus Namespace.</td>
</tr>
<tr>
<td>If the IoT Hub option is activated:</td>
<td>The connection name to the MS Azure endpoint for access to read the data of an IoT Hub in the MS Azure Portal. You can read these connection names in the MS Azure Portal.</td>
</tr>
<tr>
<td>Configuration in the MS Azure Portal:</td>
<td>In the portal, go to the All services node. Select the IoT Hub option.</td>
</tr>
<tr>
<td></td>
<td>Select an existing IoT Hub or create a new IoT Hub. At least one IoT Device must be configured for this IoT Hub.</td>
</tr>
<tr>
<td></td>
<td>The Build-in endpoints can be found in the IoT Hub settings.</td>
</tr>
<tr>
<td></td>
<td>Go to the Built-in Endpoints option to access the IoT Hub. Copy the name from the event configuration Event Hub-compatible endpoint. Attention: The ";EntityPath=..." text component is not part of the zenon driver connection string and may not be added for this option.</td>
</tr>
<tr>
<td>Example:</td>
<td>MS Azure Portal: Endpoint=sb://ihsuprodamres040dednamespace.servicebus.windows.net/SharedAccessKeyName=iothubowner;SharedAccessKey=vbR6F7HvHGgRZ6ld0VCYTbDxo8SyMgHGmO6N4VU=;EntityPath=iothub-ehub-myiothub-1657833-791bd2d757</td>
</tr>
<tr>
<td></td>
<td>zenon driver: Endpoint=sb://ihsuprodamres040dednamespace.servicebus.windows.net/SharedAccessKeyName=iothubowner;SharedAccessKey=vbR6F7HvHGgRZ6ld0VCYTbDxo8SyMgHGmO6N4VU=</td>
</tr>
</tbody>
</table>

| **Service Bus Queue Prefix / Event** | Input of the prefix for the name of the **Queue** or the **Event** |
Parameter Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Hub Name** | *Hub name* that is to be queried in Runtime.
 Note: Only characters that appear in the name of an MS Azure-Servicebus Queue are permitted.
 If the **IoT Hub** option is activated:
 - Go to the **Built-in Endpoints** option in MS Azure Portal.
 - Copy the name from the **Event Hub-compatible name** event configuration.
 This also matches with the ;*EntityPath=*... entry of the event configuration
 Example:
 `iothub-ehub-myiothub-1657833-791bd2d757` |
| **MS Azure IoT Hub Connection** | service connection string to the IoT service of MS Azure.
 Used for the secure login of the driver (service) to the IoT Hub endpoint. When configured correctly, values can also be written.
 Configuration in the MS Azure Portal:
 - In the portal, go to the **All services** node. Select the **IoT Hub** option.
 - Select an existing IoT Hub or create a new IoT Hub. At least one **IoT Device** must be configured for this IoT Hub.
 - Select the configured IoT Hub which communicates with the driver.
 - The **Shared access policies** can be found in the IoT Hub settings.
 - Select the **service** entry under **POLICY**.
 - Make sure that the **Service connect** checkbox is selected under Permissions. This option enables values to be written via the IoT Hub endpoint.
 - Copy the configuration of the **Connection string--primary key**, for example, via copy & paste.
 Example:
 `HostName=myiothub.azure-devices.net;SharedAccessKeyN` |
Data from Linked SQL Servers can be edited in zenon Analyzer. These can also be located in MS Azure.

Configuration of a linked Microsoft Azure server

1. In the dialog to administer the linked server, click on the New Microsoft Azure Server button.
 The dialog for configuring a server is opened.
2. Assign a name for the server.
3. Enter an instance name.
 Note: You can find this on Microsoft Azure.
4. Enter the name of the database.
5. Enter the user name for access.
6. Enter the password for access.
7. Click on OK.
 The linked server is created and the dialog for creation is closed.
 The new linked server is then given a connection test.
 If the test is not successful, there is a query asking whether the new settings are to be

CLOSE DIALOG

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Applies all changes in all tabs and closes the dialog.</td>
</tr>
<tr>
<td>Cancel</td>
<td>Discards all changes in all tabs and closes the dialog.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens online help.</td>
</tr>
</tbody>
</table>

You can read further details in the AzureDrv manual.

7 zenon Analyzer - Linked MS Azure Server

Data from Linked SQL Servers can be edited in zenon Analyzer. These can also be located in MS Azure.

Configuration of a linked Microsoft Azure server

1. In the dialog to administer the linked server, click on the New Microsoft Azure Server button.
 The dialog for configuring a server is opened.
2. Assign a name for the server.
3. Enter an instance name.
 Note: You can find this on Microsoft Azure.
4. Enter the name of the database.
5. Enter the user name for access.
6. Enter the password for access.
7. Click on OK.
 The linked server is created and the dialog for creation is closed.
 The new linked server is then given a connection test.
 If the test is not successful, there is a query asking whether the new settings are to be
retained:

- **Yes**: Settings are retained and are displayed in the list.
- **No**: Settings are discarded and the server is removed from the list.

Information

Each database on an SQL Azure instance must be added as its own linked server for technical reasons.

DIALOG CONFIGURATION

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked Server name</td>
<td>Name of the linked server.</td>
</tr>
<tr>
<td>Microsoft SQL Azure instance name</td>
<td>Name of the SQL Azure instance. Can be read from Microsoft Azure.</td>
</tr>
<tr>
<td></td>
<td>Syntax: <code>[any desired character sequence].[database].windows.net</code></td>
</tr>
<tr>
<td>Database on Microsoft SQL Azure instance</td>
<td>Entry of the database name. Can be read from Microsoft Azure.</td>
</tr>
<tr>
<td>User name</td>
<td>Entry of the user name.</td>
</tr>
<tr>
<td>Password</td>
<td>Password. Is not displayed in plain text.</td>
</tr>
<tr>
<td>OK</td>
<td>Applies settings and closes the dialog.</td>
</tr>
</tbody>
</table>
Option | Description
--- | ---
 | A connection test is carried out afterwards. If the connection cannot be established, the option to reject the configuration is offered.
Cancel | Discards all changes and closes the dialog.

You can read more about the Linked Server in zenon Analyzer in the *zenon Analyzer* manual in the *Manage linked servers* section.