Contents

1 Welcome to COPA-DATA help .. 4

2 Interlockings... 4

3 Detail view of context menu and toolbar ... 5

4 Engineering in the Editor .. 8
 4.1 Creating Interlockings ... 8
 4.1.1 Substitution of interlocking variables ... 10
 4.1.2 Example of configuration to substitute interlocking variables ... 14
 4.2 Formula editor .. 16
 4.2.1 List of status bits ... 18
 4.2.2 Logical operators ... 22
 4.2.3 Bit formulas ... 23
 4.2.4 Comparison operators ... 24
 4.2.5 Examples for formulas ... 25

5 Operation in the Runtime: .. 26
 5.1 Usage of Interlockings ... 26
1 Welcome to COPA-DATA help

ZENON VIDEO TUTORIALS
You can find practical examples for project configuration with zenon in our YouTube channel (https://www.copadata.com/tutorial_menu). The tutorials are grouped according to topics and give an initial insight into working with different zenon modules. All tutorials are available in English.

GENERAL HELP
If you cannot find any information you require in this help chapter or can think of anything that you would like added, please send an email to documentation@copadata.com.

PROJECT SUPPORT
You can receive support for any real project you may have from our customer service team, which you can contact via email at support@copadata.com.

LICENSES AND MODULES
If you find that you need other modules or licenses, our staff will be happy to help you. Email sales@copadata.com.

2 Interlockings
Interlockings control the access to certain zenon objects in the Runtime using variables. Operation can be blocked or released depending on variables. Depending on process statuses, operations can be activated/deactivated.

It is possible to create and use various interlockings within one project. In each interlocking several parallel interlocking conditions are possible.
INTERLOCKING OF OBJECTS

All dynamic elements except trend element and message element.

PROJECT MANAGER CONTEXT MENU

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New interlocking</td>
<td>Creates a new interlocking and opens the dialog for selecting variables.</td>
</tr>
<tr>
<td>Export all as XML</td>
<td>Exports all entries of the interlocking as an XML file.</td>
</tr>
<tr>
<td>Import XML</td>
<td>Imports XML files.</td>
</tr>
<tr>
<td>Editor profile</td>
<td>Opens the drop-down list with predefined editor profiles.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens online help.</td>
</tr>
</tbody>
</table>

Information

Variables for the interlocking can be replaced. For more details see chapter Substitution of variables and functions in dynamic elements.

Example

A machine is in full automatic operation, so it should not be switched to manual operation. Only if a certain operation status (e.g. STOP) is reached, it is allowed to be switched. With an interlocking the button for switching between manual and automatic operation can be locked in the visualization surface, until this status (e.g. STOP) is true. This can avoid incorrect operation.

3 Detail view of context menu and toolbar

TOOLBAR
### Symbol	Description
New interlocking | Creates a new interlocking and opens the dialog for selecting variables.
New interlocking condition | Creates a new interlocking condition.
Add variable | Opens the dialog for selecting variables.
Copy | Copies the selected condition.
Paste | Pastes the condition from the clipboard.
Delete | Deletes selected condition.
Export selected as XML... | Exports selected entries as an XML file.
Import XML | Imports from an XML file.
Rename | Enables the element to be renamed. Also possible by clicking in the field with the mouse or by pressing the F2 key.
Properties | Opens the property window for the selected element.
Help | Opens online help.

CONTEXT MENU INTERLOCKINGS

Parameter	Description
New interlocking | Creates a new interlocking and opens the dialog for selecting variables. |
Paste | Pastes the interlocking from the clipboard. |
Export all as XML | Exports all entries of the interlocking as an XML file. |
Import XML | Imports XML files. |
Help | Opens online help. |

CONTEXT MENU INDIVIDUAL INTERLOCKING

Parameter	Action
Add variable | Opens the dialog for selecting a variable. |
New interlocking condition | Creates a new interlocking condition. |
Detail view of context menu and toolbar

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Copies the selected interlocking.</td>
</tr>
<tr>
<td>Paste</td>
<td>Pastes the interlocking from the clipboard.</td>
</tr>
<tr>
<td>Delete</td>
<td>Deletes selected interlocking.</td>
</tr>
<tr>
<td>Export all as XML</td>
<td>Exports all entries as an XML file.</td>
</tr>
<tr>
<td>Import XML</td>
<td>Imports from an XML file.</td>
</tr>
<tr>
<td>Rename</td>
<td>Enables the element to be renamed. Also possible by clicking in the field with the mouse or by pressing the F2 key.</td>
</tr>
<tr>
<td>Properties</td>
<td>Opens the property window for the selected element.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens online help.</td>
</tr>
</tbody>
</table>

CONTEXT MENU GROUP VARIABLES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add variable</td>
<td>Opens the dialog for selecting variables.</td>
</tr>
<tr>
<td>Paste</td>
<td>Pastes the condition from the clipboard.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens online help.</td>
</tr>
</tbody>
</table>

CONTEXT MENU INDIVIDUAL VARIABLE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove variable</td>
<td>Deletes the selected variable after requesting confirmation.</td>
</tr>
<tr>
<td>Copy</td>
<td>Copies selected variable</td>
</tr>
<tr>
<td>Paste</td>
<td>Pastes the variables from the clipboard.</td>
</tr>
<tr>
<td>Properties</td>
<td>Opens the property window for the selected element.</td>
</tr>
<tr>
<td>Help</td>
<td>Opens online help.</td>
</tr>
</tbody>
</table>

CONTEXT MENU INTERLOCKING CONDITIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>New interlocking condition</td>
<td>Creates a new interlocking condition.</td>
</tr>
</tbody>
</table>
4 Engineering in the Editor

Configure the interlockings in the Editor in order to control access to certain zenon objects in the Runtime using variables.

To do this, you can:
- Create new interlockings (on page 8)
- Substitute the interlocking variables of existing interlockings (on page 10) in order to be able to use an interlocking for as many applications as you want

4.1 Creating Interlockings

Create an interlocking with an interlocking variable. Then link these to a condition in order to be able to use the interlocking in the Runtime.

Note: Variables of interlockings can be substituted for linked symbols and screen switching. Substitution of interlocking variables is only possible if, in the symbol properties under Linking rule, the checkbox of the **Consider interlocking variables** property is activated.

⚠️ **Attention**

A variable must not be an interlocking variable and a result variable at the same time. This configuration would lead to an infinite loop.

The interlocking can contain one or more conditions. To do this, you must first create one or more new interlocking conditions in the **Interlocking Conditions** node.

For each condition, a binary formula can be entered in the **Logical link** property.

The Interlocking Conditions node is also created if a new interlocking is created. The following is entered by default in each newly-created **condition**:

- **Name** property: *Condition N*
- **Logical link** property: `<No formula>`
- **Interlocking text** property: `@<No interlocking text>`
If a **Interlocking text** or a **Logical link** of a pre-existing interlocking is deleted, a warning message appears in the **output window** when compiling the project, stating that a **Interlocking text** or a **Logical link** is missing. The interlocking is active in the Runtime however.

Elements can be blocked in the visualization interface with interlocking.

Information

An element in the visualization surface is locked, if the interlocking condition applies, i.e. is *logical 1 – TRUE*.

Interlocking: If several conditions are defined in one interlocking, it is sufficient for locking the element if only *one* condition is fulfilled.

Users can be informed in the Runtime if elements cannot be operated due to interlockings.

To do this, configure the **Interlocked elements** property in the project properties in the **Runtime settings/Runtime messages for node**.

You can find further information in the **Runtime** manual in the **Runtime messages** chapter.

The formula editor (on page 16) can be used to define binary and numeric formulas as a locking condition. It is opened by clicking on the **Logical link** property in the properties window. The formula editor allows the definition of Binary statements with the help of the linked variables and **logical** or **bitwise** and **comparison operators**. See also the **Screens/comparison operators** (on page 24) chapter.

Unlocking: If several conditions are linked to the interlocking, all conditions that are met must be unlocked.

CREATING AN INTERLOCKING

1. Go to **Interlocking** in the project tree.
2. Go to **New Interlocking** in the toolbar or in the context menu.

 The **variable selection** dialog is opened.
3. Select the desired interlocking variable with a mouse click.
4. Click on the **Add** button.

 The interlocking variable is added.
5. Close the dialog by clicking on **OK**.

 The selected interlocking variable is shown under variables.

 A new condition is added.
6. You can change the name of the interlocking if you want.
a) To do this, left-click on the newly-created interlocking. The properties window of the interlocking is opened.

b) Change the name under General and Name.

7. Right-click on Interlocking Conditions and New Interlocking Condition.

8. In the properties of the interlocking condition in the Condition group in Logical Linking, go to the ... button.

The formula dialog is opened.

9. Please enter an interlocking condition.

Example: (X01.Value > 0)

10. Confirm the input by clicking on OK.

The creation of the interlocking is now complete.

VALUES OF THE RESULT VARIABLE

The result variable is initialized with the value 2 (= Interlocking is active.) when the Runtime is started.

The following values of the result variable inform you of the status of the interlocking:

- 0: not interlocked
- 1: interlocked
 Interlocking is active.
- 2: at least one condition variable does not have a value.
 Interlocking is active.
- 3: at least one value for a condition has an INVALID bit.
 Interlocking is active.

An interlocking is also active if there is no valid value. This is the case if the variable does not contain a value, has an invalid value or the INVALID bit is set.

4.1.1 Substitution of interlocking variables

You can substitute interlocking variables in order to use a previously-created interlocking for many other applications, each with their own interlocking variable.

Example: Interlocking 1 contains the Interlocking 1 interlocking variable. The substituted interlocking variables Interlocking 2, Interlocking 3, ... then also use the settings of Interlocking 1.

REQUIREMENTS

- The symbol must have content with an interlocking (on page 8).
In the symbol properties under **Linking rule**, the checkbox for the **Consider interlocking variables** property must be activated.

The desired interlocking variables must have already been created under the Variables node.

SUBSTITUTION OF INTERLOCKING VARIABLES WHEN LINKING SCREENS

Engineering:

1. In the project tree under Screens, select the screen to which you want to link the symbol.
2. Open the desired screen with a double click.
3. In the project tree, go to **Screens** and **Symbol Library**.
4. Select the desired symbol with a mouse click.

 Note: At least one piece of content of the symbol must have an interlocking in order to be able to substitute the interlocking variable.

5. Drag & drop the symbol to the desired screen to link the symbol to the screen.

The **element entry** dialog is opened.

The interlocking variable is visible in the lower part of the dialog under **Preview Source** and **Target**.

Initially, **Source** and **Target** are filled with the same interlocking variable.
6. Enter, under Linking Rule and Source (with '*' or '?'), the name of the interlocking variable in Preview under Source.

 Example: Interlocking 1

 Under Replace variables using, Name and Consider interlocking variables are selected by default.

7. Enter the name of the new interlocking variable under Interlocking rule and Replace with.

 Example: Interlocking 2 The variable must have already been created beforehand.

8. In the element entry dialog, click on the Process button.

 The number of replaced connections is shown in a separate dialog.

9. Close the dialog by clicking on OK.

 The substituted interlocking variable of the content of the symbol is now visible under Preview and Target.

10. Close the dialog by clicking on OK.

SUBSTITUTION OF INTERLOCKING VARIABLES IN THE SYMBOL LIBRARY

Engineering:

1. In the project tree, go to the Screens and Symbol Library nodes.

2. Double-click on the symbol whose interlocking variables are to be substituted in order to selected.

 A view of the symbol is opened.

3. In the symbol, click on the linked symbol with the interlocking whose interlocking variables are to be substituted.

4. In the properties of the content of the symbol, go to Interlocking Rule.

5. Click on the selection button ... under Preview.

 The element entry dialog is opened.

 The interlocking variable is visible in the lower part of the dialog under Preview Source and Target.
Initially, **Source** and **Target** are filled with the same interlocking variable.

6. Enter, under Linking Rule and Source (with '*' or '?'), the name of the interlocking variable in Preview under Source.

 Example: Interlocking 1

 Under Replace variables using, Name and Consider interlocking variables are selected by default.

7. Enter the name of the new interlocking variable under Interlocking rule and Replace with.

 Example: Interlocking 2 The variable must have already been created beforehand.

8. In the element entry dialog, click on the Process button.

 The number of replaced connections is shown in a separate dialog.

9. Close the dialog by clicking on OK.

 The substituted interlocking variable of the content of the symbol is now visible under Preview and Target.

10. Close the dialog by clicking on OK.

11. If you want to substitute further content of the symbol with interlocking variables, carry out the described steps for this content too.
4.1.2 Example of configuration to substitute interlocking variables

Basic procedure when creating the example configuration:
1. Create an interlocking.
2. Link the symbol to an interlocking.
3. Substitute the interlocking variable.
4. Link the symbol to a screen in order to be able to use the substitution in the Runtime.

CREATING AN INTERLOCKING
1. Go to Interlocking in the project tree.
2. Go to New Interlocking in the toolbar or in the context menu.
 The variable selection dialog is opened.
3. Select the desired interlocking variable with a mouse click.
4. Click on the Add button.
 The interlocking variable is added.
5. Close the dialog by clicking on OK.
 The selected interlocking variable is shown under variables.
 A new condition is added.
6. You can change the name of the interlocking if you want.
 a) To do this, left-click on the newly-created interlocking.
 The properties window of the interlocking is opened.
 b) Change the name under General and Name.
7. Right-click on Interlocking Conditions and New Interlocking Condition.
8. In the properties of the interlocking condition in the Condition group in Logical Linking, go to the ... button.
 The formula dialog is opened.
9. Please enter an interlocking condition.
 Example: (X01.Value > 0)
10. Confirm the input by clicking on OK.

The creation of the interlocking is now complete.

LINK A SYMBOL TO THE INTERLOCKING.
1. In the project tree, go to Screens and Symbol Library.
2. Select an existing symbol that you want to link to the interlocking.
 However, you can also create a new symbol as an alternative. This procedure is described below.
3. Click on New Symbol to create a new symbol.
 The symbol name is created.
4. Double click on the symbol name to open a detailed view. Add, a rectangle in the symbol for example.
5. Change the color of the rectangle in the properties window, under Fill and Fill Color, to any desired color.
6. Go to Visibility/Flashing in the properties window.
7. Under Visibility, click on the downward-pointing arrow of the text field to see all selection possibilities.
8. Set From Interlocking.
9. Select the previously-created interlocking under Interlocking.
 The symbol is now linked to the interlocking. The visibility of the symbol is orientated towards the formula defined in the interlocking conditions.
10. Save the changes.
 The symbol is now shown in the preview.

SUBSTITUTION OF THE INTERLOCKING VARIABLE

1. In the project tree, go to Screens and Symbol Library.
2. Create a new symbol.
3. Drag & drop the previously-created symbol with the interlocking to the detail view of the new symbol.
 The dialog to enter elements is opened.
 The interlocking variable is visible in the lower part of the dialog under Preview Source and Target.
 Initially, Source and Target are filled with the same interlocking variable.
4. Enter, under Linking Rule and Source (with ‘*’ or ‘?’), the name of the interlocking variable in Preview under Source.
 Example: Interlocking 1
 Under Replace variables using, Name and Consider interlocking variables are selected by default.
5. Enter the name of the new interlocking variable under Interlocking rule and Replace with.
Example: Interlocking 2 The variable must have already been created beforehand.

6. In the element entry dialog, click on the Process button.
 The number of replaced connections is shown in a separate dialog.

7. Close the dialog by clicking on OK.
 The substituted interlocking variable of the content of the symbol is now visible under Preview and Target.

8. Close the dialog by clicking on OK.

9. Click on the disk symbol to save the changes.

SUBSTITUTION OF INTERLOCKING VARIABLES WHEN LINKING A SYMBOL TO A SCREEN

You can also substitute interlocking variables if you link the corresponding symbol from the symbol library to a screen.

Engineering:

1. Open the desired screen to do this.

2. Select the desired symbol in the symbol library and drag & drop it into the screen.
 The element entry dialog is opened.

3. Carry out the substitution as described under substitution of the interlocking variables.

4.2 Formula editor

The formula editor provides support when creating formulas with logical or comparative operators with a combined element, for interlockings and command processing. If additional variables are required for a formula, create these in the formula variables area of the status window by clicking on the Add button. existing formulas are displayed in the status list with the letters F.

Note on the input of decimal points:

- Decimal separator: Comma (,) is automatically converted into a dot (.)
- Zero as a decimal point is removed automatically; 23,000 automatically becomes 23
CREATING A FORMULA

Click on the Formula button in the status window. The formula editor opens.

You select the bits for your formula in the left screen.

On the right, you find the operators for logical and comparative operations.

The formula created is displayed in the Formula area.

Information

Up to 99 variables can be linked in one formula. X01 to X99. The length of the formula must not exceed 4096 characters.

THE MEANING OF THE BITS:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value bits</td>
<td>32 value bits (from 0 - 31) are available. They describe the variable value bit by bit. For binary variables, only bit 0 is of importance, for SINT and USINT only the bits from 0-7, etc.</td>
</tr>
<tr>
<td></td>
<td>Note: The value refers to the raw value (signal range) of the variables and not to the converted measuring range.</td>
</tr>
<tr>
<td>State bits</td>
<td>Here you find the most commonly used status bits. You find the exact definition and use of the status bits in the Status Bits List (on page 18).</td>
</tr>
<tr>
<td>unreceipted</td>
<td>Not acknowledged is treated like a usual status bit. But here it is listed separately, because it does not belong to the classical variable statuses.</td>
</tr>
<tr>
<td>value and status</td>
<td>In the formulas, all values (value bits and status bits) are treated as binary values and can be logically linked with AND, OR, etc.</td>
</tr>
</tbody>
</table>
The total value and overall status are an exception to this. In order to arrive at a Boolean expression, this total value has to be ORed bitwise (on page 23) with a constant. For this, we use the operator &.

For the result 0 (FALSE) of this logical ORing, we get the binary value 0 (FALSE), otherwise 1 (TRUE).

Example: See the bitwise ORing example (on page 23) chapter

Info

The status bits NORM and N_NORM are only available in the formula editor and cannot be engineered via the status.

If other settings outside the formula are set for the current status, they are combined with the formula with a logical AND.

Refer to the examples (on page 25) section for examples.

Information

Formulas with binary X values and bitwise linking can be used with a maximum of 2 binary values. If more values are required, the linking must be carried out without binary X values.

Example:

X01.Value & X02.Value -> works

X01.Value & X02.Value & X03.Value -> does not work

But:

X01.00 AND X02.00 AND X03.00 AND X04.00 AND X05.00 -> works

4.2.1 List of status bits

<table>
<thead>
<tr>
<th>Bit number</th>
<th>Short term</th>
<th>Long name</th>
<th>zenon Logic identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>M1</td>
<td>User status 1; for Command Processing: Action type "Block"; Service Tracking of the IEC 850 driver</td>
<td>_VSB_ST_M1</td>
</tr>
<tr>
<td>Bit number</td>
<td>Short term</td>
<td>Long name</td>
<td>zenon Logic identifier</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>1</td>
<td>M2</td>
<td>User status 2</td>
<td>_VSB_ST_M2</td>
</tr>
<tr>
<td>2</td>
<td>M3</td>
<td>User status 3</td>
<td>_VSB_ST_M3</td>
</tr>
<tr>
<td>3</td>
<td>M4</td>
<td>User status 4</td>
<td>_VSB_ST_M4</td>
</tr>
<tr>
<td>4</td>
<td>M5</td>
<td>User status 5</td>
<td>_VSB_ST_M5</td>
</tr>
<tr>
<td>5</td>
<td>M6</td>
<td>User status 6</td>
<td>_VSB_ST_M6</td>
</tr>
<tr>
<td>6</td>
<td>M7</td>
<td>User status 7</td>
<td>_VSB_ST_M7</td>
</tr>
<tr>
<td>7</td>
<td>M8</td>
<td>User status 8</td>
<td>_VSB_ST_M8</td>
</tr>
<tr>
<td>8</td>
<td>NET_SEL</td>
<td>Select in the network</td>
<td>_VSB_SELEC</td>
</tr>
<tr>
<td>9</td>
<td>REVISION</td>
<td>Revision</td>
<td>_VSB_REV</td>
</tr>
<tr>
<td>10</td>
<td>PROGRESS</td>
<td>In operation</td>
<td>_VSB_DIREC</td>
</tr>
<tr>
<td>11</td>
<td>TIMEOUT</td>
<td>Command “Timeout exceeded” (command runtime exceeded)</td>
<td>_VSB_RTE</td>
</tr>
<tr>
<td>12</td>
<td>MAN_VAL</td>
<td>Manual value</td>
<td>_VSB_MVALUE</td>
</tr>
<tr>
<td>13</td>
<td>M14</td>
<td>User status 14</td>
<td>_VSB_ST_14</td>
</tr>
<tr>
<td>14</td>
<td>M15</td>
<td>User status 15</td>
<td>_VSB_ST_15</td>
</tr>
<tr>
<td>15</td>
<td>M16</td>
<td>User status 16</td>
<td>_VSB_ST_16</td>
</tr>
<tr>
<td>16</td>
<td>GI</td>
<td>General interrogation</td>
<td>_VSB_GR</td>
</tr>
<tr>
<td>17</td>
<td>SPONT</td>
<td>Spontaneous</td>
<td>_VSB_SPONT</td>
</tr>
<tr>
<td>18</td>
<td>INVALID</td>
<td>Invalid</td>
<td>_VSB_I_BIT</td>
</tr>
<tr>
<td>19</td>
<td>T_STD_E</td>
<td>External standard time (standard time)</td>
<td>_VSB_SUWI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caution: up to version 7.50, this was the status bit T_CHG_A</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>OFF</td>
<td>Switched off</td>
<td>_VSB_N_UPD</td>
</tr>
<tr>
<td>21</td>
<td>T_EXTERN</td>
<td>Real time - external time stamp</td>
<td>_VSB_RT_E</td>
</tr>
<tr>
<td>22</td>
<td>T_INTERNAL</td>
<td>Internal time stamp</td>
<td>_VSB_RT_I</td>
</tr>
<tr>
<td>Bit number</td>
<td>Short term</td>
<td>Long name</td>
<td>zenon Logic identifier</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>23</td>
<td>N_SORTAB</td>
<td>Not sortable</td>
<td>_VSB_NSORT</td>
</tr>
<tr>
<td>24</td>
<td>FM_TR</td>
<td>Error message transformer value</td>
<td>_VSB_DM_TR</td>
</tr>
<tr>
<td>25</td>
<td>RM_TR</td>
<td>Working message transformer value</td>
<td>_VSB_RM_TR</td>
</tr>
<tr>
<td>26</td>
<td>INFO</td>
<td>Information for the variable</td>
<td>_VSB_INFO</td>
</tr>
<tr>
<td>27</td>
<td>ALT_VAL</td>
<td>Alternate value</td>
<td>_VSB_AVALUE</td>
</tr>
<tr>
<td>28</td>
<td>RES28</td>
<td>Reserved for internal use (alarm flashing)</td>
<td>_VSB_RES28</td>
</tr>
<tr>
<td>29</td>
<td>N_UPDATE</td>
<td>Not updated (zenon network)</td>
<td>_VSB_ACTUAL</td>
</tr>
<tr>
<td>30</td>
<td>T_STD</td>
<td>Internal standard time</td>
<td>_VSB_WINTER</td>
</tr>
<tr>
<td>31</td>
<td>RES31</td>
<td>Reserved for internal use (alarm flashing)</td>
<td>_VSB_RES31</td>
</tr>
<tr>
<td>32</td>
<td>COT0</td>
<td>Cause of transmission bit 1</td>
<td>_VSB_TCB0</td>
</tr>
<tr>
<td>33</td>
<td>COT1</td>
<td>Cause of transmission bit 2</td>
<td>_VSB_TCB1</td>
</tr>
<tr>
<td>34</td>
<td>COT2</td>
<td>Cause of transmission bit 3</td>
<td>_VSB_TCB2</td>
</tr>
<tr>
<td>35</td>
<td>COT3</td>
<td>Cause of transmission bit 4</td>
<td>_VSB_TCB3</td>
</tr>
<tr>
<td>36</td>
<td>COT4</td>
<td>Cause of transmission bit 5</td>
<td>_VSB_TCB4</td>
</tr>
<tr>
<td>37</td>
<td>COT5</td>
<td>Cause of transmission bit 6</td>
<td>_VSB_TCB5</td>
</tr>
<tr>
<td>38</td>
<td>N_CONF</td>
<td>Negative confirmation of command by device (IEC 60870 [P/N])</td>
<td>_VSB_PN_BIT</td>
</tr>
<tr>
<td>39</td>
<td>TEST</td>
<td>Test bit (IEC870 [T])</td>
<td>_VSB_T_BIT</td>
</tr>
<tr>
<td>40</td>
<td>WR_ACK</td>
<td>Writing acknowledged</td>
<td>_VSB_WR_ACK</td>
</tr>
<tr>
<td>41</td>
<td>WR_SUC</td>
<td>Writing successful</td>
<td>_VSB_WR_SUC</td>
</tr>
<tr>
<td>42</td>
<td>NORM</td>
<td>Default status</td>
<td>_VSB_NORM</td>
</tr>
<tr>
<td>43</td>
<td>N_NORM</td>
<td>Deviation normal status</td>
<td>_VSB_ABNORM</td>
</tr>
<tr>
<td>Bit number</td>
<td>Short term</td>
<td>Long name</td>
<td>zenon Logic identifier</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>44</td>
<td>BL_870</td>
<td>IEC 60870 status: blocked</td>
<td>_VSB_BL_BIT</td>
</tr>
<tr>
<td>45</td>
<td>SB_870</td>
<td>IEC 60870 status: substituted</td>
<td>_VSB_SP_BIT</td>
</tr>
<tr>
<td>46</td>
<td>NT_870</td>
<td>IEC 60870 status: not topical</td>
<td>_VSB_NT_BIT</td>
</tr>
<tr>
<td>47</td>
<td>OV_870</td>
<td>IEC 60870 status: overflow</td>
<td>_VSB_OV_BIT</td>
</tr>
<tr>
<td>48</td>
<td>SE_870</td>
<td>IEC 60870 status: select</td>
<td>_VSB_SE_BIT</td>
</tr>
<tr>
<td>49</td>
<td>T_INVAL</td>
<td>External time stamp invalid</td>
<td>not defined</td>
</tr>
<tr>
<td>50</td>
<td>CB_TRIP</td>
<td>Breaker tripping detected</td>
<td>not defined</td>
</tr>
<tr>
<td>51</td>
<td>CB_TR_I</td>
<td>Breaker tripping detection inactive</td>
<td>not defined</td>
</tr>
<tr>
<td>52</td>
<td>OR_DRV</td>
<td>Value out of the valid range (IEC 61850)</td>
<td>not defined</td>
</tr>
<tr>
<td>53</td>
<td>T_UNSALIGN</td>
<td>ClockNotSynchronized (IEC 61850)</td>
<td>not defined</td>
</tr>
<tr>
<td>54</td>
<td>PR_NR</td>
<td>Not recorded in the Process Recorder</td>
<td>not defined</td>
</tr>
<tr>
<td>55</td>
<td>T_DEV</td>
<td>Configured time difference between internal and external timestamp reached.</td>
<td>not defined</td>
</tr>
<tr>
<td>56</td>
<td>RES56</td>
<td>reserved</td>
<td>not defined</td>
</tr>
<tr>
<td>57</td>
<td>RES57</td>
<td>reserved</td>
<td>not defined</td>
</tr>
<tr>
<td>58</td>
<td>RES58</td>
<td>reserved</td>
<td>not defined</td>
</tr>
<tr>
<td>59</td>
<td>RES59</td>
<td>reserved</td>
<td>not defined</td>
</tr>
<tr>
<td>60</td>
<td>RES60</td>
<td>reserved</td>
<td>not defined</td>
</tr>
<tr>
<td>61</td>
<td>RES61</td>
<td>reserved</td>
<td>not defined</td>
</tr>
<tr>
<td>62</td>
<td>RES62</td>
<td>reserved</td>
<td>not defined</td>
</tr>
<tr>
<td>63</td>
<td>RES63</td>
<td>reserved</td>
<td>not defined</td>
</tr>
</tbody>
</table>
4.2.2 Logical operators

Logical links: Variables will only be checked for the logical value '0'; if the value does not equal '0', it will be considered as '1'.

In contrast to bit formulas, the technical range can be modified by a stretch factor - (not equal '0' or '1').

<table>
<thead>
<tr>
<th>Operator</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>logical 'AND'</td>
</tr>
<tr>
<td>NOT</td>
<td>Negation</td>
</tr>
<tr>
<td>OR</td>
<td>logical 'OR'</td>
</tr>
<tr>
<td>XOR</td>
<td>logical 'EXCLUSIVE OR'</td>
</tr>
</tbody>
</table>

The operators have the following priority in the formula calculation:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>& (operator for bit formulas (on page 23))</td>
</tr>
<tr>
<td>2</td>
<td>NOT</td>
</tr>
<tr>
<td>3</td>
<td>AND</td>
</tr>
<tr>
<td>4</td>
<td>XOR/OR</td>
</tr>
</tbody>
</table>

Information

In formulas all status bits are available. For other use the availability can be limited.

You can read details on status processing in the Status processing chapter.

Info

Up to 99 variables can be linked in one formula. X01 to X99.

Info

The status bits NORM and N_NORM are only available in the formula editor and cannot be engineered via the status.
4.2.3 Bit formulas

Bit formulas only have a logical high or low state. In contrast to logical formulas, the raw value is already predefined (0,7).

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&</td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.3.1 Example: ORing bitwise

You want to find out if one of the user status bits 1-8 (M1 ... M8) of the variable X01 is set.

USUAL FORMULA:

X01.M1 OR X01.M2 OR X01.M3 OR X01.M4 OR X01.M5 OR X01.M6 OR X01.M7 OR X01.M8

This query can be made much easier by the logical ORing of the overall status.

LOGICAL ORING

X01.Status & 0xFF

The constant can be entered in hexadecimals, as described above:

0xFF corresponds to decimal 255; these are the first eight status bits (binary 11111111). If one of these bit is set to 1, the result of this bitwise ORing is 1 (true), otherwise it is 0 (false).

If, for example, all user status bits except the user status bit M7 should be queried, the binary statement for this would be: 10111111. Bit 7 is not of interest and is thus set to 0. This corresponds to 0xBF in hexadecimal. The expression for the formula is then: X01.Status & 0xBF.

Instead of ORing bitwise with a constant, the value can also be directly compared to a decimal number. If the comparison is wrong, the binary value is 0 (false) otherwise it is 1 (true).

Example:

You want to find out if the value is equal to the constant 202: The formula is:

X01.value = 202
If the value is equal to the constant 202, the result of the comparison is 1 (True) otherwise it is 0 (False).

Note: The bitwise ORing works with the OR character (|), the same as in this example.

4.2.4 Comparison operators

Comparison operators are for the direct comparison of two numeric values. The result of this comparison is a binary value. "0" if the condition is not fulfilled and "1" if the condition is fulfilled.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>less</td>
</tr>
<tr>
<td>></td>
<td>greater</td>
</tr>
<tr>
<td><=</td>
<td>Less than or equal</td>
</tr>
<tr>
<td>>=</td>
<td>greater or equal</td>
</tr>
<tr>
<td>=</td>
<td>Equal</td>
</tr>
<tr>
<td><></td>
<td>unequal</td>
</tr>
</tbody>
</table>

To the left and to the right of the comparison operator, there has to be a (total) value or a (total) status, single bits cannot be used with these comparison operators.

There can also be a constant to the right of the comparison operator. These constants are entered as hexadecimal values or decimal values in the combined element. Hexadecimal numbers are automatically converted to decimal numbers by clicking on OK. For example, `0x64` corresponds to the numerical value 100.

Note: The combined element is not available in the **Batch Control** module.

Example

X01.value >= X02.value
The result is 1, if the value of X01 is higher than or equal to the value of X02

X01.value = 0x64
The result is 1, if the value of X01 is exactly equal to the numeric value 100 (= hex 0x64)

(X01.value = 0x64) OR (X01.value = 0x65)
The result is 1, if the value of X01 is exactly equal to the numeric value 100 or 101 (= hex 0x64 and hex 0x65)
4.2.5 Examples for formulas

SIMPLE LOGICAL AND LINKING BETWEEN TWO BIT VALUES

Example

Formula: X01.03 AND X02.03

This formula has the status TRUE, if both bit 3 of variable 1 and bit 3 of variable 2 both have the value 1.

COMPARISON OF AN VALUE OR STATUS OF A VARIABLE

Example

(X01.Value > X02.Value)

COMPARE COMPARISONS TO ONE OTHER ON A LOGICAL BASIS

Example

(X01.Value > X02.Value) AND (X01.Value = X02.Value)

COMPARE WITH VALUE BITS AND STATUS BITS

Example

(X01.Value > X02.Value) AND (X01.Value = X02.Value) OR (X01.03 = X02.03)

COMPARE A VALUE WITH A DECIMAL OR HEXADECIMAL VALUE

Example

Formula: (X01.Value = 111)
Formula: (X01.Value = 0x6F)

If a hexadecimal values is used, this is later transferred to decimal by clicking on OK. If a decimal value is entered and confirmed, the value continues to be displayed as a decimal value after reopening.

Info

It is not possible to use a comma or a period when entering values.
5 Operation in the Runtime:

In order to be able to use an interlocking in the Runtime, it must already have been created in full in the Editor.

Changes in the Runtime are not possible.

5.1 Usage of Interlockings

If an interlocking is linked to one of the dynamic screen elements, it is locked or unlocked depending on the logical linking in conditions of the interlocking. If the condition is fulfilled – the result is logical “TRUE” or 1, the element is locked.

The dynamic element that is to be unlocked must be selected. One of the configured interlockings is selected in its properties in the Authorization properties group for the Interlocking property.

Information

In order to be able to see if the element is locked in the Runtime, the display of a padlock symbol for locked elements can be activated in the Graphical design properties group in the Graphical identification active property.

In addition, you can define the appearance of an interlocked button using the properties Interlocked buttons (Graphical design properties group) or Locked buttons (under User Administration).