Manuale di zenon

Rete

v.8.00
Tutti i diritti riservati.

La distribuzione e la copia di questo documento - indifferente dal metodo usato - è consentita solo con il permesso scritto della società COPA-DATA. I dati tecnici servono solo alla descrizione del prodotto e non rappresentano in alcun modo caratteristiche garantite in senso giuridico. Con riserva di modifiche - anche di tipo tecnico.
Indice

1. Benvenuti nell'help di COPA-DATA .. 7

2. Rete .. 7

3. Ruoli dei computer .. 10
 3.1 Terminologia .. 11
 3.2 Modello Client-Server ... 12
 3.3 Modello ridondante ... 12
 3.4 Modelli multi-gerarchici .. 13

4. Requisiti .. 14
 4.1 Sincronizzazione ora ... 19
 4.1.1 Sincronizzazione dell’ora in WAN ... 21

5. Impostare la rete di zenon .. 22
 5.1 Modello Client-Server ... 24
 5.1.1 Redundancy ... 25
 5.1.2 Configurare il server ... 26
 5.1.3 Configurazione dei client .. 27
 5.2 Gestione multi-progetto ... 32
 5.2.1 Definizione della struttura nell’Editor 34
 5.2.2 Trasferire e avviare progetti ... 35
 5.2.3 Gestione progetti .. 36
 5.3 Trasparenza orizzontale ... 46
 5.4 Ottimizzazione di progetti con un gran numero di client 47

6. Crittografia forte della comunicazione di rete 49
 6.1 Nozioni di base ... 49
 6.2 Attivare la crittografia ... 52
 6.2.1 Localmente tramite lo Startup Tool 52
 6.2.2 Via Trasporto Remoto .. 53
 6.3 Password - Crittografia di rete ... 55
 6.4 Checklist in caso di errori ... 56
 6.5 Messaggi d’errore .. 57
14.9 Interfacce di programmazione
14.10 Lista incrociata
14.11 Generatore Report & Report Viewer
14.12 Ricetta
14.13 Sequenze di comando
14.14 Script
14.15 Elenco contestuale
14.16 Driver nella rete di zenon
 14.16.1 Driver per variabili interne
 14.16.2 Driver - Valori limite e matrici di reazione
 14.16.3 Driver - Ritardo del cambio di ruoli in caso di cambio di ridondanza
14.17 zenon Web Client nella rete ridondante
14.18 Temporizzatori
14.19 Attribuzioni

15. Messaggi di rete del driver di sistema

16. Visualizzazione della connessione nel Runtime di zenon
1. Benvenuti nell'help di COPA-DATA

GUIDA GENERALE

Se non avete trovato le informazioni che cercavate o se avete dei consigli relativi al completamento di questo capitolo dell'help, potete scrivere una E-Mail all'indirizzo documentation@copadata.com.

SUPPORTO TECNICO ALLA PROGETTAZIONE

Per domande relative a progetti concreti ci si può rivolgere via E-Mail all'indirizzo support@copadata.com.

LICENZE E MODULI

Se si ha bisogno di nuovi moduli o licenze, rivolgersi ai dipendenti di COPA-DATA all'indirizzo sales@copadata.com.

2. Rete

Le reti di zenon possono essere impostate e configurate in modo veloce e sicuro.

zenon in rete consente, fra l’altro, quanto segue:

- Accesso completo al Runtime da diversi terminali. In questo modo, operazioni, come il riconoscimento di allarmi da una postazione, saranno visibili su tutti gli altri computer della rete.
- Protocolli centralizzati
- Creazione di sistemi ridondanti (vedi Ridondanza (A pagina: 81), Ridondanza circolare (A pagina: 108))
- Cambio ridondanza con metodi di analisi integrati.
- Creazione di sistemi distribuiti (vedi Gestione multi-progetto (A pagina: 32))
- Uso di zenon Web Server e zenon Web Client per l’accesso via Web Browser.
Uso di zenon in un ambiente Terminal Server (A pagina: 63)

Uso di crittografia (A pagina: 49) avanzata

Lavoro simultaneo allo stesso progetto da diverse postazioni (vedi progettazione distribuita)

SEMPLICE GESTIONE DELLA RETE DI ZENON

La funzionalità di rete di zenon consente di utilizzare progetti in modo distribuito su diversi calcolatori. Con essa si possono creare strutture di rete (A pagina: 11) molto efficienti e complesse. Si possono configurare strutture in modo tale che determinati contenuti di progetto siano visibili solamente su quella postazione destinata a svolgere un determinato compito (uno specifico terminale). L’Editor di zenon aiuta gli utenti nella configurazione di queste strutture.

La gestione integrata della topologia (A pagina: 70) visualizza graficamente le relazioni fra i singoli progetti, sui rispettivi computer e i ruoli che questi svolgono nella rete. Una routine di controllo verifica la struttura configurata per testarne la completezza e rilevare eventuali errori di configurazione.

Con le funzioni dei nodi di rete, zenon controlla anche se la topologia di rete scelta può funzionare.

Info

Per i progetti di rete, tenere presente in quali ruoli (A pagina: 10) (server primario, Server-Standby, client) moduli e funzioni (A pagina: 149) devono essere gestiti ed eseguiti.

ZENON WEB SERVER

zenon Web Server consente di accedere al Runtime via Intranet o Internet. Questo non richiede nessun adattamento o modifica del progetto. L’accesso avviene tramite zenon Web Client. Questo offre la stessa funzionalità e visualizzazione del progetto come il Runtime di zenon. zenon Web Server è disponibile come:

- zenon Web Server: semplice funzionalità di monitoraggio.
- zenon Web Server Pro: completa funzionalità di monitoraggio e gestione. È possibile interagire direttamente col processo tramite il WEB.
- zenon Web Server Pro Light: limitata funzionalità dello zenon Webserver Pro per l’uso dello zenon Operator.

Info

Ulteriori informazioni su questo tema si trovano nella parte della guida dedicata all’Everywhere Server by zenon.
COMPORTAMENTO CON UNA LICENZA DATA CONCENTRATOR

Con una licenza Data Concentrator non è possibile collegare un client con un server primario, o un Server-Standby! Questo tipo di licenza è soprattutto usata per lo zenon Analyzer. Un’eventuale richiesta di connessione inviata da un client ad un server viene sempre rifiutata da quest’ultimo. I valori sul client non vengono aggiornati. Il Server-Standby configurato può connettersi al server. Questo garantisce che la ridondanza funzioni anche con una licenza Data Concentrator.

COMPATIBILITÀ RUNTIME

Il Runtime di zenon funziona in rete e come dispositivo indipendente retrocompatibile. Questo significa:

- Il Runtime può sempre caricare anche progetti di versioni precedenti e interpretarli e visualizzarli in modo corrispondente a queste versioni.
- Anche se Runtime, Server e Standby condividono un numero di versione superiore, possono caricare i progetti da versioni precedenti e interpretarli e visualizzarli in modo corrispondente a queste versioni.
- Funzionamento misto possibile. Con la gestione multi-progetto, i progetti di diverse versioni possono essere caricati simultaneamente ed eseguiti in parallelo.

Nota: i progetti realizzati a partire dalla versione 6.20 SP4 possono essere lanciati direttamente, anche senza averli prima convertiti. I progetti realizzati con versioni precedenti a questa, però, dovranno essere prima convertiti.

COMPATIBILITÀ ONLINE

La compatibilità online consente l’interazione di sistemi Runtime (anche tramite zenon Web Client) nella rete di zenon, anche se la versione del Runtime-Client è di numero superiore a quella del Runtime-Server.

Il Runtime corrente può caricare progetti delle seguenti versioni:

- 6.20 SP4
- 6.21 SP0
- 6.21 SP1
- 6.22 SP0
- 6.22 SP1
- 6.50 SP0
- 6.51 SP0
- 7.00 SP0
- 7.10 SP0
- 7.11 SP0
Diversi progetti possono essere caricati anche nell’ambito della gestione multi-progetto. Ad esempio, il progetto di integrazione può essere dalla versione 8.00, un sottoprogetto dalla versione 7.60 e un altro sottoprogetto dalla versione 6.51.

3. Ruoli dei computer

Con zenon è possibile creare diverse topologie di rete. A partire dal semplice modello client-server, per arrivare a modelli complessi e multi-gerarchici.

Anche in zenon vengono usati termini specifici del settore IT, come, ad es., server e client. Tuttavia, al fine di consentire un’identificazione chiara di tutti i componenti individuali anche nel caso di complesse strutture multi-gerarchiche con diversi computer e progetti, in zenon si parla sempre di ruoli. I ruoli sono da considerare sempre dal punto di vista del progetto.

A seconda di quanto definito in fase di configurazione, il Runtime di zenon può avviare su uno stesso calcolatore uno o più progetti (vedi anche la gestione multi-progetto (A pagina: 32)). In questo caso, il computer su cui viene avviato il Runtime assume uno dei seguenti ruoli per il progetto corrispondente:

- Server primario
- Server-Standby
- Client

Questi ruoli vengono illustrati negli esempi seguenti che prendono in considerazione diversi tipi di topologie.

ℹ️ **Info**

Quando, in questa documentazione, si parla di server primario, server-standby oppure client, si intende sempre il ruolo che il computer in questione svolge nell’ambito del progetto.
3.1 Terminologia

Nella rete di zenon si usano i seguenti termini per la descrizione dei ruoli dei computer:

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server:</td>
<td>Calcolatore con connessione con il PLC. Il server assume la gestione esclusiva del processo e dei dati di progetto. La comunicazione viene monitorata mediante un watchdog (A pagina: 19). Nel caso in cui il server dovesse smettere di funzionare, il Server-Standby ne assume le funzioni, sempre che si sia stato definito un Server-Standby. Non appena il server è pronto a riprendere le sue funzioni, lo fa in modo automatico e sincronizza tutti i dati.</td>
</tr>
<tr>
<td>Server-Standby:</td>
<td>In sistemi ridondanti, il Server-Standby assume il ruolo di server quando quest’ultimo smette di funzionare. Si comporta come un client nelle rete, ma salva tutti i dati, esattamente come il server. Nel caso della ridondanza hardware, il Server-Standby comunica indipendentemente in modo bidirezionale con il PLC ridondante. Il Server-Standby lavora con un buffer interno. In questo modo si evita una perdita di dati nel tempo di inattività che intercorre fra il momento in cui il server smette di funzionare e quello in cui il Server-Standby ne assume i compiti.</td>
</tr>
<tr>
<td>Client:</td>
<td>Ogni computer su cui viene avviato il Runtime è un client. I client si connettono al server in modo tale da poter ricevere o inviare i dati del processo.</td>
</tr>
</tbody>
</table>
3.2 Modello Client-Server

Nel modello Client-Server, un computer è il server primario; tutti gli altri computer sono client.

- Il computer 1 è il server primario per il progetto A.
- Il computer 2 è il client per il progetto A.

Info

Ulteriori informazioni si trovano nella parte della guida dedicata all’EW_SERV_BY (A pagina: 32).

3.3 Modello ridondante

Nel modello ridondante, un computer è il server primario e un altro è il Server-Standby. Tutti gli altri computer sono client.

Se il server primario smette di funzionare, il Server-Standby ne assume il ruolo. Tutti i client si connettono al nuovo server primario.

RIDONDANZA SENZA CLIENT

- Il computer 1 è il server primario per il progetto A.
- Il computer 2 è il Server-Standby per il progetto A.
- Se il computer 1 smette di funzionare, il computer 2 diventa il nuovo server primario per il progetto A.
RIDONDANZA CON CLIENT

- Il computer 1 è il server primario per il progetto A.
- Il computer 2 è il Server-Standby per il progetto A.
- Se il computer 1 smette di funzionare, il computer 2 diventa il nuovo server primario per il progetto A. Tutti i client si connettono automaticamente al computer 2.

Info

Ulteriori informazioni si trovano nella parte della guida dedicata alla EW_SERV_BY (A pagina: 25).

3.4 Modelli multi-gerarchici

Info

I progetti multi-gerarchici possono essere eseguiti anche senza rete, su un computer standalone.

ESEMPI

MODELLO MULTI-CLIENT

- Il computer 1 è il server primario per il progetto A.
- Il computer 2 è il server primario per il progetto B.
- Il progetto I (progetto di integrazione) viene eseguito sul computer 3 come progetto standalone e avvia i progetti A e B.
 - Il computer 3 è client per entrambi questi progetti.

MODELLO MULTI-SERVER

- Il progetto I (progetto di integrazione) viene eseguito sul computer 1 come progetto standalone e avvia i progetti A e B.
 - Il computer 1 è il server primario per entrambi questi progetti.
Il requisito basilare per usare la rete di zenon è disporre di una rete Windows funzionante.

GENERALE

Devono essere soddisfatti i seguenti requisiti:

- TCP/IP come protocollo di rete.
- Risoluzione nome funzionante, a scelta via **DNS**, **WINS** o **file HOST** locali.
TCP Port 1100 libera:
Quando viene caricato un progetto di rete, il Runtime di zenon avvia automaticamente il servizio di rete zenNetSrv. Questo servizio apre la porta 1100. Per questo motivo essa deve essere raggiungibile da un apparecchio remoto e non deve essere bloccata da un firewall.

Info
Le reti di zenon funzionano con tutti i sistemi operativi supportati.

IPV4 E IPV6
La rete di zenon consente di scegliere se usare IPv4 o IPv6. Non è possibile un funzionamento simultaneo dei due protocolli. L'impostazione viene definita:
- **Network configuration** Nello Startup Tool
 - oppure
- Nel file zenon6.ini.

Se questa impostazione viene modificata, tutti i processi di zenon in corso devono essere riavviati.
I servizi interessati sono:
- zenAdminSrv
- zenSysSrv
- zenLogSrv
- zenDBSrv

I seguenti componenti non sono interessati da quest’impostazione; usano sempre il protocollo IPv4:
- Comunicazione driver con i PLC
- Comunicazione protocollo via ProcessGateways
- Comunicazione Workbench e Runtime in zenon Logic

Attenzione
IPv6 funziona solamente a partire dalla versione 7.00 di zenon. Se si usa IPv6, non si può avviare nessuna versione precedente a zenon 7.00.

PORTE UTILIZZATE
Per la comunicazione in zenon, vengono utilizzate esclusivamente porte TCP, e non porte UDP.
Le porte seguenti sono necessarie per usare zenon in rete:
<table>
<thead>
<tr>
<th>Servizi</th>
<th>File</th>
<th>Compito</th>
<th>Porta TCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servizio di rete</td>
<td>zenNetSrv.exe</td>
<td>Comunicazione Runtime.</td>
<td>1100</td>
</tr>
<tr>
<td>Servizio di trasporto</td>
<td>zenSysSrv.exe</td>
<td>Trasferimento dati via Trasporto Remoto (Editor).</td>
<td>1101</td>
</tr>
<tr>
<td>zenon Web Server</td>
<td>zenWebSrv.exe</td>
<td>Gateway fra zenon Web Client e Runtime</td>
<td>1102</td>
</tr>
</tbody>
</table>

I numeri di porta possono essere modificati singolarmente nella scheda **Listening ports** dello **Startup Tool**. In questo caso, tutti i dispositivi interessati devono essere adattati.

INFO

*Ulteriori informazioni su questo argomento si trovano nella guida in linea relativa ai Tools, nel capitolo **Startup Tool**.*
PORTE STANDARD

<table>
<thead>
<tr>
<th>Applicazione</th>
<th>Porta standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>zenon</td>
<td></td>
</tr>
<tr>
<td>Network Service</td>
<td>1100</td>
</tr>
<tr>
<td>Transport Service</td>
<td>1101</td>
</tr>
<tr>
<td>WEB Service Classic</td>
<td>1102</td>
</tr>
<tr>
<td>DB Service</td>
<td>1103</td>
</tr>
<tr>
<td>SQL Browser Service,</td>
<td>1434</td>
</tr>
<tr>
<td>(per la progettazione multiutente nell’Editor)</td>
<td></td>
</tr>
<tr>
<td>zenAdminSrv.exe</td>
<td>50777</td>
</tr>
<tr>
<td>zenLicTransfer</td>
<td>50784</td>
</tr>
<tr>
<td>(License Transfer Service)</td>
<td></td>
</tr>
<tr>
<td>Logging Service</td>
<td>50780</td>
</tr>
<tr>
<td>zenVNC.exe</td>
<td>5600 - 5610</td>
</tr>
<tr>
<td>SNMP Trap Service</td>
<td>50782</td>
</tr>
<tr>
<td>WEB Service Tunneling</td>
<td>8080</td>
</tr>
<tr>
<td>zenon Logic</td>
<td></td>
</tr>
<tr>
<td>Il numero di porta assegnato a zenon Logic o straton dipende dal progetto e dal servizio.</td>
<td>1200 - 1210</td>
</tr>
<tr>
<td>Per es.: il primo progetto zenon Logic occupa 1200 e 9000, il secondo progetto 1201 e 9001 ecc</td>
<td>4500 - 4510</td>
</tr>
<tr>
<td></td>
<td>7000 - 7010</td>
</tr>
<tr>
<td></td>
<td>9000 - 9010</td>
</tr>
<tr>
<td>zenon Analyzer</td>
<td></td>
</tr>
<tr>
<td>Administration Service</td>
<td>50777</td>
</tr>
<tr>
<td>Analyzer Connector Service</td>
<td>50778</td>
</tr>
<tr>
<td>Analyzer License Service</td>
<td>50779</td>
</tr>
<tr>
<td>ZAMS</td>
<td>50781</td>
</tr>
<tr>
<td>Driver</td>
<td></td>
</tr>
<tr>
<td>Driver Simulation</td>
<td>6000 - 6020</td>
</tr>
</tbody>
</table>
Requisiti

<table>
<thead>
<tr>
<th>Process Gateway OPC Server</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Gateway SNMP</td>
<td>161</td>
</tr>
<tr>
<td>Process Gateway Modbus</td>
<td>502</td>
</tr>
<tr>
<td>Process Gateway IEC60870-5 104 slave</td>
<td>2402</td>
</tr>
<tr>
<td>Process Gateway DEC</td>
<td>5555</td>
</tr>
<tr>
<td>Process Gateway DNP3 Slave</td>
<td>20000</td>
</tr>
</tbody>
</table>

CONTROLLARE I REQUISITI

RISOLUZIONE DEI NOMI

Per controllare la risoluzione dei nomi:

1. Avviare il prompt dei comandi di Windows cmd.exe
2. Eseguire il seguente comando:
 ping [NOMECOMPUTER]
3. Se la risoluzione nomi è corretta, riceverete l’indirizzo IP del dispositivo come risposta, altrimenti verrà visualizzata una segnalazione di errore

PORTE TCP

Per verificare se la porta TCP 1100 è raggiungibile:

1. Avviare il Runtime di zenon con un progetto di rete su un calcolatore remoto. In questo modo verrà avviato il programma zenNetSrv.exe e verrà aperta la porta TCP 1100.
2. Avviare il prompt dei comandi di Windows cmd.exe
3. Eseguire il seguente comando:
 telnet RECHNERNAME 1100
4. Non appena viene stabilita una connessione, il contenuto del prompt dei comandi sparisce. In caso contrario, viene visualizzato un messaggio di errore.

⚠️ Attenzione

Il comando Telnet non è parte del sistema operativo Windows e deve essere installato separatamente. Informazioni aggiuntive su questo argomento si possono trovare nella guida riguardante il sistema operativo (criterio di ricerca: Telnet).
4.1 Sincronizzazione ora

Con i progetti di rete, tutti i computer devono lavorare in rete in modo sincrono. zenon esegue automaticamente la sincronizzazione necessaria.

In una topologia che prevede diversi server primari (come, per es., nel caso della ridondanza circolare (A pagina: 108)), si raccomanda di realizzare la sincronizzazione tramite un servizio ora esterno (per es. DCF77), oppure mediante le risorse di Windows. In questo caso si deve disattivare la sincronizzazione ora automatica di zenon.

⚠️ Attenzione

Se la differenza di tempo tra server e client è superiore a 5 secondi, non verrà più sincronizzato nessun file.

DISATTIVARE LA SINCRONIZZAZIONE AUTOMATICA DELL’ORA IN ZENON

Se la sincronizzazione dell’ora deve essere attivata o disattivata manualmente, si deve modificare il seguente inserimento nel file zenon6.ini:

```
[Netz]
TIMESYNCH=1 -> sincronizzazione automatica dell’ora attiva (default)
TIMESYNCH=0 -> sincronizzazione automatica dell’ora disattivata
```

SINCRONIZZAZIONE DELL’ORA ESTERNA USANDO IL SISTEMA OPERATIVO

Se la sincronizzazione automatica dell’ora è stata disattivata in zenon, la sincronizzazione può avvenire tramite il sistema operativo. A questo scopo bisogna definire un server di riferimento ora (con o senza un servizio ora esterno come DCF77) che gestisce la sincronizzazione dell’ora degli altri calcolatori.

Nella topologia classica Client-Server/Standby (senza gestione multi-progetto), il server primario è il master orario attivo. Questo dovrebbe aggiornare il proprio orario se possibile da solo, tramite un servizio ora esterno. I rispettivi client riceveranno l’ora attuale da questo server (a seconda dei tempi di timeout configurati) e sincronizzeranno di conseguenza il proprio orario. La comunicazione avviene via SNTP (Simple Network Time Protokoll). Il ritardo del trasferimento viene preso in considerazione nel processo.
Watchdog

La sincronizzazione dell’ora avviene periodicamente in corrispondenza del timeout impostato.

Se si usa l’impostazione standard di 30 secondi per la proprietà Network communication timeout nello Startup Tool, il servizio di rete (zenNetSrv.exe) di ogni client invia un watchdog al servizio di rete (zenNetSrv.exe) del server primario ogni 10 secondi durante il funzionamento online. Se il server primario risponde entro 30 secondi almeno ad uno dei tre watchdog, il relativo client presuppone che la connessione di rete funzioni correttamente.

Configurazione nello Startup Tool:

Application -> Options... -> Scheda Network configuration -> General Settings Network communication timeout.

Configurazione nello zenon6.ini:

In alternativa, l'impostazione può essere effettuata direttamente nel file zenon6.ini:

[Netz]
NET_TIMEOUT_MSEC=30000

(Timeout in millisecondi, default: 30000.)

Non dimenticare la configurazione aggiuntiva necessaria in WAN (A pagina: 21).

Attenzione: il tempo di timeout minimo è di 5 secondi. Se si imposta un valore inferiore, il sistema lo interpreta come l'inserimento un timeout di 5 secondi.

COMANDI IN WINDOWS

Per la sincronizzazione dell’ora esterna tramite Windows, inserire il seguente comando con i relativi argomenti necessari nella console dell’elaborazione dei comandi: NET TIME [/nome computer | /DOMAIN:[nome dominio] /RTSDOMAIN:[nome dominio]] [/SET] [/YES]

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| NET TIME | ▶ Sincronizza l’orologio del computer con quello di un altro computer o quello di un altro dominio oppure
 | ▶ Visualizza l’orario per un computer o un dominio

Se questo comando viene eseguito senza ulteriori argomenti, verranno visualizzati la data corrente e l’ora corrente del computer che è stato definito come server di riferimento ora per il dominio.
<table>
<thead>
<tr>
<th>Nome Computer</th>
<th>Il nome del computer che deve essere controllato o sincronizzato.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOMAIN[:Nome dominio]</td>
<td>L’ora viene sincronizzata con il controller di dominio primario del dominio Nome dominio.</td>
</tr>
<tr>
<td>RTSDOMAIN[:Nome dominio]</td>
<td>L’ora del computer viene sincronizzata con un server di riferimento orario affidabile, del dominio Nome dominio.</td>
</tr>
<tr>
<td>/SET</td>
<td>Sincronizza l’orologio del calcolatore con l’orologio del computer indicato oppure del dominio indicato. Dopo aver impostato il comando, verranno visualizzati l’ora del server e la richiesta se deve essere settato questo orario.</td>
</tr>
<tr>
<td>/YES</td>
<td>Visualizza l’ora attuale del server e la sincronizza con il calcolatore locale senza una richiesta di conferma.</td>
</tr>
</tbody>
</table>

Esempio

`NET TIME \Server /SET /YES`

4.1.1 Sincronizzazione dell’ora in WAN

In una WAN e per connessioni dial-up, il valore standard di 30 secondi per il timeout significa che la connessione viene mantenuta probabilmente in modo permanente.

Selezionare dunque in una WAN un tempo di timeout che instauri una connessione solo ad intervalli desiderati.

Tenere presente, però, che: tanto più lungo è il timeout, tanto più tardi il sistema riconosce che il server ha smesso di funzionare. Se, ad esempio, viene impostato come timeout il valore 64800, il tempo di timeout sarà di 18 ore. Il sistema stabilisce una connessione e invia un watchdog ogni 6 ore. Di conseguenza il sistema si accorgerà che il server ha smesso di funzionare solo dopo 18 ore.

Info

Se nel file `zenon6.ini` non c’è nessun inserimento di definizione del timeout, il sistema usa automaticamente quello standard di 30 secondi quando viene avviato Runtime.
FUNZIONE "CAMBIO IMMAGINE"

Quando c’è un cambio immagine, il sistema richiede dati in modo attivo. Procedura:

- Il sistema controlla se negli ultimi 30 secondi è stato inviato un watchdog al server primario.
- In caso contrario viene inviato immediatamente un watchdog al server primario. Il tempo di attesa per la risposta è di 40 secondi.
- Se il sistema riconosce che il server ha smesso di funzionare, il servizio di rete di zenon cerca automaticamente di riconnettersi ogni 30 secondi.

Nella rete WAN, questo provocherebbe un tentativo permanente di stabilire la connessione. Questo comportamento può essere modificato mediante inserimenti nel file *zenon6.ini*:

1. Aprire il file zenon6.in.
2. Passare alla sezione [NETZ]
3. Creare o modificare l’inserimento.

   ```
   NET_CONNECTWAIT_MSEC=30000
   ```
 Questo definisce il valore in millisecondi per la riconnessione.
 Valore massimo: tempo di timeout.
   ```
   NET_CONNECTCOUNT=
   ```
 Questo definisce il numero delle ripetizioni per ogni Reconnect pro ciclo.
 Il valore di default è 0 ripetizioni, che significa un solo tentativo di riconnessione.

5. **Impostare la rete di zenon**

TOPOLOGIE

zenon supporta numerose topologie di rete:

- **Rete Client-Server (A pagina: 24):**
 Lo stesso progetto viene eseguito sul server e su tutti i client.
- **Rete multi-server:**
 Un client può accedere a diversi server e dunque visualizzare i dati di diversi progetti contemporaneamente.
- Modello multi-server multi-client:
 Tutti i client e server comunicano fra di loro. Si può accedere da ogni progetto anche ad altri progetti.

CONFIGURAZIONE DI RETE

Per rendere un progetto capace di funzionare in rete:

1. Nelle proprietà di progetto, passare al nodo **Rete**.
2. Attivare la proprietà **Rete attiva**
3. Usare la proprietà **Server 1** per definire il computer che deve assumere il ruolo di server nell’ambito del progetto.
 Nota: l’indirizzo IP non è sufficiente; bisogna inserire il nome del PC.

Se necessario, configurare in questa sezione anche:

- **Server-Standby (A pagina: 104):** proprietà **Server 2**:
- **Ridondanza (A pagina: 81):** proprietà **Tipo di ridondanza**:
- **Messaggio di chiusura:** definisce se, quando si termina il Runtime su un server, i client vengono informati con 70 secondi di anticipo.
- **Autorizzazione (A pagina: 132):** se azioni di gestione devono essere eseguite contemporaneamente solamente su una postazione.

⚠️ **Attenzione**

Assegnazione di un nome a Server 1 e Server 2:

- Si deve inserire il nome calcolatore.
 Non è consentito l’inserimento di un indirizzo IP.
- localhost non può essere usato.
5.1 Modello Client-Server

Nel classico modello Client-Server si usa solamente un progetto che viene avviato su tutti i computer coinvolti. Uno di essi sarà il server primario per questo progetto. Tutti gli altri computer collegati sono client.

Per poter impostare un modello client-server, nel progetto deve verificarsi quanto segue:

- La proprietà **Rete attiva** deve essere attivata.
- Nella proprietà **Server 1** deve essere inserito il nome del computer che deve svolgere il ruolo di server primario.

Raccomandazione: scegliere come server primario il calcolatore più potente della rete.

Nel modello client-server di zenon:

- Solo il server primario ha una connessione diretta con il PLC
- Il server primario gestisce tutti i dati di processo (per es. dati online, dati di archivio, allarmi, ricette, ecc.)
- Il server primario gestisce tutti i dati di progetto (per es. immagini, funzioni, variabili definite, ecc.)
- Ogni altro calcolatore della rete si avvia come client
- Ogni client instaura una connessione con il server primario quando viene avviato il Runtime, sincronizza i dati di progetto e
• visualizza i dati di processo attuali

Info

5.1.1 Redundancy

I server SCADA ridondanti vengono utilizzati quando è necessario avere un controllo completo sul processo e salvaguardare al 100% la sicurezza dei dati, anche nel caso in cui un server dovesse smettere di funzionare.

Questo obiettivo di un salvataggio sicuro di tutti i dati si può conseguire affiancando ad un server di progetto un altro server, il cosiddetto Server-Standby. Quest’ultimo riconosce automaticamente l’eventuale disfunzione del server. Se il server primario smette di funzionare per qualsiasi ragione, il Server-Standby ne assume la completa funzionalità.

Per evitare che vadano perduti dei dati nell’intervallo di tempo tra l’emergere del problema di funzionamento del server e il riconoscimento del problema stesso, il Server-Standby immagazina in un buffer i dati generati in questo periodo. Questa memorizzazione nel buffer avviene anche quando il Server-Standby non è il server primario. Dopo che il server ha smesso di funzionare, si ricorre a questo buffer in modo tale che non ci sia nessuna perdita di dati. In questo modo il sistema di controllo garantisce la ridondanza senza perdita di dati.

A seconda di come è stata configurata la proprietà **Tipo di ridondanza**, dopo il restart il server originario viene avviato o come server, o come Server-Standby.

<table>
<thead>
<tr>
<th>Tipo di ridondanza</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non dominante</td>
<td>Il server originario (Server 1) viene avviato come Server-Standby Server 2, mantenendo il ruolo di server.</td>
</tr>
<tr>
<td>Dominante</td>
<td>Il server originario (Server 1) riassume il ruolo di server dopo che sono stati sincronizzati tutti i dati. Server 2 viene retrocesso al ruolo di Server-Standby.</td>
</tr>
<tr>
<td>Ponderata</td>
<td>A seconda della valutazione configurata (A pagina: 91), il server originario viene avviato o come server o come Server-Standby.</td>
</tr>
</tbody>
</table>

Informazioni dettagliate su questo argomento si trovano nel capitolo **Modalità di ridondanza** (A pagina: 88).
Se il Server-Standby funziona e poi viene avviato il server, quest’ultimo si procura tutti i dati Runtime dallo standby. Nel caso in cui siano state apportate delle modifiche al progetto mentre il server non era in funzione, e nel caso che abbiate effettuato l’update solo sul server (non funzionante), questi cambiamenti vengono sovrascritti nel momento in cui il server riceverà i dati dallo stand-by.

In questo caso bisognerà effettuare l’update dei dati prima dell’avvio del server anche sullo stand-by, oppure spegnere lo stand-by prima di avviare il server. Quando poi lo stand-by verrà riavviato con il server attivo, lo stand-by si procurerà automaticamente i nuovi dati dal server.

CONFIGURARE LO STANDBY.

- Nelle proprietà della rete (proprietà di progetto), inserire oltre al Server (proprietà: Server 1) anche il nome dello Standby Server (proprietà: Server 2).
- Per trasferire i file Runtime, procedere come nel caso del client.

Il sistema di controllo supporta due diverse forme di ridondanza:

<table>
<thead>
<tr>
<th>Ridondanza software</th>
<th>Il PLC non è ridondante. Solo il sistema di controllo è eseguito in modo ridondante. (Caso standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridondanza hardware</td>
<td>Sia il PLC che il sistema di controllo sono ridondanti.</td>
</tr>
</tbody>
</table>

Informazioni dettagliate su questo argomento si trovano nel capitolo Ridondanza (A pagina: 81) di questa guida.

5.1.2 Configurare il server

Il server primario instaura la connessione con il PLC e gestisce tutti i dati, sia quelli online, che quelli di progettazione. I client sincronizzano i loro dati con il server primario.

Per configurare il server primario.

1. Attivare la proprietà **Rete attiva**.
2. Definire il PC che deve funzionare da server primario per il progetto in questione usando la proprietà **Server 1**.
 Nota: Non è consentito usare l’indirizzo IP; bisogna inserire il nome del calcolatore.
3. Fare attenzione a configurare correttamente le variabili del driver interno (A pagina: 168)
4. Optional se necessario, creare gli script AUTOSTART e AUTOEND (A pagina: 167) per i client
Attenzione

Assegnazione di un nome a Server 1 e Server 2:

- Si deve inserire il nome calcolatore. Non è consentito l’inserimento di un indirizzo IP.
- localhost non può essere usato.

- Se il computer di sviluppo, quello cioè con cui avete creato il progetto, è allo stesso tempo il server primario, la configurazione è terminata.

Se il computer di sviluppo non è il server desiderato, trasferire la configurazione del progetto in questione al computer desiderato. I dati possono essere trasferiti via Trasporto Remoto o tramite la topologia di rete.

Info

Ulteriori informazioni su questo argomento si trovano nel capitolo Gestire e controllare la topologia di rete (A pagina: 70), oppure nella parte della guida dedicata al Trasporto Remoto.

5.1.3 Configurazione dei client.

I client possono essere configurati tramite Trasporto Remoto, topologia di rete o manualmente. E’ raccomandata la configurazione tramite Trasporto Remoto, oppure tramite topologia di rete.

Tenere presente quanto segue:

- Se il computer di sviluppo dovesse essere anche un client, avviare il Runtime localmente su questo computer.
- Tutti gli altri client possono essere configurati con il Trasporto Remoto (A pagina: 28), con la Topologia di rete (A pagina: 70), oppure manualmente (A pagina: 29).
- Se sui client devono essere eseguiti processi particolari, si deve creare sul server uno script (A pagina: 167) che definisce il comportamento al momento dello start (script AUTOSTART_CLIENT) e a quello della chiusura (script AUTOEND_CLIENT (A pagina: 167)).

Info

Ulteriori informazioni su questo argomento si trovano nel capitolo Gestire e controllare la topologia di rete (A pagina: 70), oppure nella parte della guida dedicata al Trasporto Remoto.
Impostare client con il Trasporto Remoto

Di default, il Trasporto Remoto trasferisce i file Runtime sempre al computer definito come server nel gruppo Rete delle proprietà di progetto. Per impostare dei client dal computer di sviluppo via Trasporto Remoto, si deve anzitutto configurare nuovamente la destinazione della trasmissione del Trasporto Remoto prima di passare ad impostare il client.

Per impostare dei client usando il Trasporto Remoto:

1. Aprire il nodo Generale delle proprietà di progetto.
2. Cliccare sulla proprietà Trasporto remoto
 Si apre la finestra di dialogo Trasporto Remoto.
3. Nel settore Connetti, inserire il nome del client in rete nella proprietà Nome.
4. Confermare la configurazione cliccando sul pulsante OK.
5. Instaurare una connessione via Trasporto remoto con il client.
 Per continuare ad usare il Trasporto Remoto, la cosa migliore è usare i simboli della barra degli strumenti.
6. Trasferire al client tutti i file Runtime con il Trasporto Remoto.
7. Impostare il progetto di partenza per il client con il Trasporto Remoto.
8. Avviare il Runtime sul client con il Trasporto Remoto.

Ulteriori informazioni sull’argomento si trovano nella parte della guida dedicata all’EW_SERV_BY.

Impostare client via topologia di rete

La topologia di rete è uno strumento che si presta molto bene ad impostare più client contemporaneamente. I file Runtime possono essere trasferiti a più computer contemporaneamente usando la selezione multipla.

Ulteriori informazioni su questo tema si trovano nella parte della guida dedicata all’EW_SERV_BY (A pagina: 70).
Impostare client manualmente

Per configurare dei client per l’avvio del Runtime:

1. Chiudere il zenon Editor e il zenon Runtime.
2. Aprire il file zenon6.ini con un editor dei testi.
 Il file si trova nella cartella %ProgramData%COPA-DATA\System\%
3. Cancellare la riga VBF30 =.... oppure commentare questa riga.
 (Nota: questo inserimento definisce quale progetto deve essere caricato quando viene avviato il Runtime).
4. Lasciare chiuso l’Editor e avviare il Runtime.
5. Si apre una finestra di dialogo che chiede quale progetto debba essere caricato.
6. Attivare la checkbox dell’opzione Carica progetto dal Runtime Server.
7. Configurare i campi di inserimento:
 a) Server Runtime:
 b) Nome progetto:
 Nome del progetto in esecuzione sul server primario.
 Nota: assicurarsi di aver inserito il nome progetto corretto. Se il nome della cartella non corrisponde a quello di progetto, quest’ultimo deve essere modificato qui!
c) **Cartella di destinazione progetto:**
Cartella per il Runtime sul disco fisso locale del client. Si può selezionare una cartella esistente usando il pulsante ..., oppure si può inserire manualmente un percorso usando la tastiera. Se si inserisce una cartella non ancora esistente, questa viene generata automaticamente.

d) Confermare l’inserimento cliccando su **OK**.

8. Queste configurazioni hanno il seguente effetto nel Runtime di zenon.
Il Runtime:
 a) Stabilisce una connessione con il server primario
 b) Copia i suoi file Runtime nella cartella di destinazione del progetto
 c) Avvia il Runtime.
 d) Richiede (se necessario) un riavvio del Runtime

9. L’inserimento **VBF30=**... nel file **zenon6.ini** viene settato nella cartella di destinazione del progetto.
 Così il Runtime avvia automaticamente il progetto di rete sul client ad ogni nuovo start.

 ![Attenzione](image)
 Ripetere questa operazione per ogni client.

CONFIGURAZIONE DEL SERVER RUNTIME IN UNA RETE RIDONDA

Con una configurazione ridondante della rete di zenon, la distribuzione dei ruoli di server primario e S
er-Server dipende dal **Tipo di ridondanza** impostato. È possibile che i ruoli svolti dai computer configurati nell’Editor come **Server 1** e **Server 2** cambi a Runtime, in modalità che dipendono dalla configurazione del **Tipo di ridondanza**, e dall’analisi corrente (nel caso sia stata impostata la modalità **Tipo di ridondanza ponderata**).

'Per la configurazione nella finestra di dialogo **Runtime Server**, quindi, indicate sempre entrambi i server. I nomi server sono separati l’uno dall’altro da un punto e virgola (;). È consentito l’uso di spazi vuoti per i nomi server.

La sequenza dei server impostati corrisponde all’ordine di configurazione. Il client Runtime non si avvia se i nomi computer non corrispondono.

![Ridondanza di rete](image)
Se si cambia la configurazione di Server 1 o Server 2, questa modifica viene rilevata durante il reload su client. A Runtime verrà visualizzata una finestra di dialogo che informa dell’avvenuta modifica della configurazione server e obbliga un riavvio del client.

Assicurarsi che, se necessario, i nuovi file Runtime siano trasferiti di nuovo al client.

Comportamento a Runtime

A Runtime, i progetti di rete possono essere gestiti nello stesso modo da tutti i calcolatori della rete e vengono visualizzati in modo uguale. Se, al momento dell’avvio del Runtime, non è definito nessun progetto valido, si aprirà la finestra di dialogo che serve a stabilire il progetto Runtime. Per i dettagli al proposito vedere sezione Impostare client manualmente (A pagina: 29).

Differenze fra il server primario e i client:

- Solamente il server primario del progetto ha una connessione con l’hardware e gestisce i dati di processo.
- Gli altri calcolatori (client) ricevono da questo:
 - I valori attuali delle variabili
 - I messaggi di sistema della Lista eventi cronologica
 - Le informazioni relative agli allarmi
 - Ricette
 - Dati d’archivio
 - ecc.

Il trasferimento dal server primario ai client avviene in modo spontaneo (per es. modifica valore di un driver) e gestito dagli eventi (per es. apertura di un’immagine zenon di tipo Trend esteso, che ha bisogno di dati archivio del server primario).

MONITORAGGIO DELLA CONNESSIONE

Se si usa l’impostazione standard di 30 secondi per la proprietà Network communication timeout nello Startup Tool, il servizio di rete (zenNetSrv.exe) di ogni client invia un watchdog al servizio di rete (zenNetSrv.exe) del server primario ogni 10 secondi durante il funzionamento online. Se il server primario risponde entro 30 secondi almeno ad uno dei tre watchdog, il relativo client presuppone che la connessione di rete funzioni correttamente.
5.2 Gestione multi-progetto

La gestione multi-progetto consente di realizzare delle soluzioni decentralizzate. I sotto-progetti possono essere distribuiti a diversi calcolatori. I singoli calcolatori, a loro volta, possono essere server primario, Server-Standby o client per i corrispettivi sotto-progetti.

Per mezzo della gestione multi-progetto è possibile:

- Modificare contemporaneamente nell'Editor diversi progetti di un workspace.
- Avviare a Runtime diversi progetti simultaneamente e accedere dunque direttamente a variabili, funzioni, archivi anche da altri progetti.

Info

La gestione multi-progetto non è disponibile con lo zenon Operator. In questo caso è possibile creare e amministrare nell’Editor solamente un progetto e un progetto globale per workspace. Il Runtime può avviare solamente un progetto.

STRUTTURA

Requisito è l’esistenza di un progetto di integrazione che viene caricato a Runtime come progetto di partenza.

zenon crea una struttura ad albero multi-gerarchica in cima alla quale si trova il progetto di integrazione. La gestione multi-progetto consente di mettere i progetti in una relazione logica gli uni con gli altri.
Impostare la rete di zenon

Info

Configurare e controllare la topologia usando la topologia di rete (A pagina: 70) di zenon.

LAVORARE IN MODO EFFICIENTE CON LA GESTIONE MULTI-PROGETTO E LA GERARCHIA DEI PROGETTI

Zenon consente di riutilizzare in modo coerente i dati e le immagini dei progetti esistenti. La gestione multi-progetto di zenon crea una relazione logica fra i singoli progetti e li mette in relazione gerarchica gli uni nei confronti degli altri. L’utente può visualizzare questa gerarchia di progetti in modo grafico nell’Editor di zenon trascinando i progetti con il mouse alla posizione desiderata e creando così una struttura ad albero multi-gerarchica.

Il progetto che si trova in cima a questa struttura gerarchica è il progetto di integrazione. Tutti gli altri sono subordinati al progetto di integrazione. Nella struttura di progetto, i dati dei singoli progetti sono disponibili e accessibili anche dagli altri.

La struttura multi-progetto di zenon è comparabile ad un raccoglitore:

- In qualsiasi momento è possibile aggiungere degli altri fogli – cioè progetti zenon. Il raccoglitore contiene sempre automaticamente tutte le informazioni dei fogli in esso contenuti. Si può sfogliare le pagine di questo raccoglitore in qualsiasi momento e vedere le informazioni in esse contenute, senza dover estrarre i singoli fogli. Nella struttura multi-progetto di zenon, gli utenti possono passare da un’immagine all’altra e da un progetto all’altro senza dover estrarli dalla struttura.

- Il progetto di integrazione può essere paragonato all’indice di un raccoglitore. Serve da progetto di navigazione centrale e consente di visualizzare immagini o dati appartenenti ai progetti subordinati. I singoli progetti sono autarchici e possono continuare ad essere gestiti in modo autonomo. L’accesso da un progetto ai dati o alle immagini di un altro, avviene attraverso le interfacce standard di zenon. Le estensioni o le modifiche vengono fatte direttamente nei singoli progetti. Gli eventuali lavori di manutenzione hanno effetto solamente sul progetto in questione, mentre il sistema complessivo non ne viene interessato.

Nota: al momento di eseguire la configurazione, tenere presenti le raccomandazioni relative alla configurazione monitor.

GESTIONE MULTI-PROGETTO SIGNIFICA

- Strutture piccole e semplici.
- Manutenzione semplice, veloce e chiara dei singoli progetti.
 - È possibile, ad esempio, disattivare singoli progetti senza che questo abbia influenza sugli altri.
 - Allo stesso modo è possibile distribuire i progetti su differenti PC.
- Distribuzione del carico.
- Possibilità di gestione di più progetti contemporaneamente, perché tutti i progetti che si trovano su un PC sono attivi simultaneamente.
- La struttura di rete multi-gerarchica permette la raccolta di dati (valori di misurazione, allarmi, segnalazioni di sistema, dati di archivio, ecc.) in un progetto di livello superiore.
- Nessun limite al numero di progetti attivi per ogni PC.
- Riunione di progetti in grandi stazioni di controllo
- Struttura a nodi – separazione rete fisica

5.2.1 Definizione della struttura nell’Editor

La struttura viene creata nell’Editor con il semplice Drag&Drop. È necessario, oltre ai progetti produttivi, anche un progetto di integrazione che gestisca tutti i progetti subordinati. Dato che i progetti standalone non inviano dati ad altri computer, in ogni (sotto)progetto deve essere definito un server primario. Lo stesso progetto di integrazione può essere anche un progetto produttivo con capacità di rete.

ESEMPIO

In questo esempio useremo tre progetti:
- Progetto di integrazione IPRO
- Progetto produttivo PRO1
- Progetto produttivo PRO2

Per creare la struttura:
1. Creare tre progetti:
 - IPRO
 - PRO1
 - PRO2
2. Definire per ogni computer un server primario.
 (Il progetto di integrazione può essere eseguito anche come progetto standalone).
3. Tenendo premuto il tasto sinistro del mouse, trascinare all’interno del manager di progetto PRO1 su IPRO
4. Fare la stessa cosa con PRO2.
5. **PRO1** e **PRO2** verranno adesso visualizzati come rami del progetto **IPRO** nel manager di progetto.

Così è stata creata la struttura gerarchica.

Info

Affinché sia possibile selezionare gli elementi di sotto-progetti (come immagini, variabili o funzioni), deve essere attivata l’opzione **Mantieni progetto in memoria** nel menù contestuale del progetto.

5.2.2 Trasferire e avviare progetti

Per mezzo della topologia di rete (A pagina: 70), il progetto di integrazione può essere trasferito automaticamente insieme a tutti i sotto-progetti al rispettivo computer di destinazione. Se il progetto di integrazione è anche progetto di partenza, vengono trasferiti automaticamente anche tutti i sotto-progetti.

TRASFERIRE E AVVIARE PROGETTI MANUALMENTE

Per trasferire e avviare dei progetti manualmente, si può usare il Trasporto Remoto. In questo caso, ogni progetto viene trasferito singolarmente ai computer corrispondenti.

- Trasferire con il Trasporto Remoto tutti i file Runtime di PRO1 al suo server primario.
- Impostare con il Trasporto Remoto il progetto di partenza.
Avviare il Runtime con il Trasporto Remoto.

Chiudere la connessione online.

Fare lo stesso con PRO2

Info

Per trasferire in questo esempio il progetto di integrazione e i due sotto-progetti ad un client via Trasporto Remoto, sono necessarie 3 operazioni Trasporto remoto (per ogni progetto un’operazione).

In questo caso è preferibile usare lo strumento della topologia di rete (A pagina: 70), visto che tutti i progetti possono essere trasferiti contemporaneamente anche a diversi computer.

5.2.3 Gestione progetti

Ci sono diverse possibilità di accedere ai dati di sotto-progetti; fra le altre:

- Progetto di integrazione (A pagina: 37)
- Navigazione fra i progetti (A pagina: 37)
- Usare variabili o funzioni di un altro progetto (A pagina: 39)
- Depositare delle ricette in diverse variabili di diversi progetti (A pagina: 42)
- Creare archivi per usarli in più progetti (A pagina: 40)
- Creare AML o CEL condivise da più progetti (A pagina: 44)

Attenzione

Nell’effettuare la configurazione, si deve tener presente in quali ruoli (server primario, Server-Standby, client) vengono eseguiti moduli e funzioni. Una lista delle possibili configurazioni si trova in: Comportamento dei moduli in rete (A pagina: 149).
Il progetto di integrazione

Il progetto di integrazione gestisce sotto-progetti a cui si può accedere a Runtime. Il progetto di integrazione può essere utilizzato nella gestione multi-progetto sia come semplice progetto di gestione (per es. per navigare ai sotto-progetti), che come vero e proprio progetto produttivo (con una propria connessione PLC, archiviazione, ecc.). Se il progetto di integrazione viene impostato come quello di partenza, a Runtime tutti i sotto-progetti vengono automaticamente avviati allo start di quello di integrazione.

In un progetto di integrazione, ad esempio, si possono creare con pochi clic del mouse delle Liste di informazione allarmi, o Liste Eventi Cronologiche centrali, per tutti i progetti subordinati. Così gli allarmi di tutti i sotto-progetti possono essere visualizzati in ordine cronologico nella Lista di informazione allarmi del progetto di integrazione.

Attenzione

Quando si imposta la gestione multi-progetto, bisogna assicurarsi che la navigazione funzioni.

Info

Per avere la possibilità di cancellare sotto-progetti, questi ultimi devono essere modificabili. Un sotto-progetto creato con una versione precedente dell’Editor rispetto a quella con cui è stato realizzato il progetto di integrazione, ad esempio, può essere cancellato solo dopo la conversione.

Navigazione fra i progetti

Quando si lavora con diversi sotto-progetti in un progetto di integrazione, è assolutamente necessario far sì che si possa passare a Runtime in qualsiasi momento da un sotto-progetto ad un altro, oppure al progetto di integrazione.

Suggerimento: creare un modello che si trova sempre in primo piano. Creare poi un´immagine con pulsanti di navigazione basata su questo modello.

CAMBIO IMMAGINE A SOTTOPROGETTI

Per passare fra immagini di singoli progetti, usare la funzione Cambio immagine di zenon. Per far in modo che la possibilità di navigare fra le immagini sia sempre disponibile, creare in primo luogo un modello che si trova sempre in primo piano:

1. Creare un nuovo modello che offra posto agli elementi di navigazione.
2. Assegnarli la proprietà **Sempre in primo piano**

3. Attivare le proprietà **Tipo di cornice** e **Titolo** (così si potrà spostare il modello a Runtime). Naturalmente si può usare anche un modello senza cornice e titolo che si trova in una posizione fissa.

4. Creare un’immagine con pulsanti per la navigazione basata su questo modello.

ESEMPIO: CAMBIO FRA PRO1 E PRO2

1. Creare una nuova funzione di Cambio immagine.

2. Se nel workspace attuale c’è più di un progetto, la finestra di dialogo di selezione immagini verrà estesa alla selezione di un progetto.

3. Selezionare **PRO1**.

4. Selezionare l’immagine di partenza del **PRO1** e chiudere la finestra di dialogo cliccando su **OK**.

5. Ripetere i punti da 1 a 4 per **PRO2**.

6. Aggiungere all’immagine di navigazione due pulsanti testo con la didascalia **PRO1** e **PRO2**.

7. Collegare i due pulsanti alle due funzioni appena create.

Attenzione

zenon non verifica nell’Editor se la struttura di rete permette effettivamente a Runtime un accesso al progetto/immagine selezionato.

Per esempio, nell’Editor si può creare nel progetto **PRO1** un cambio ad un’immagine del progetto di integrazione.Questo cambio, però, funzionerà a Runtime solo se anche il progetto di integrazione è stato avviato. Questo cambio immagine non funzionerà su un calcolatore su cui è stato avviato solamente il progetto **PRO1** (progetto di partenza).
Variabili e funzioni

Si può accedere direttamente a variabili e funzioni di altri progetti dello stesso workspace usando gli Elementi dinamici.

ESEMPIO: VARIABILE

1. Aprire l’immagine di partenza di IPRO.
2. Aggiungere un nuovo elemento dinamico Valore numerico.
3. Si apre la finestra di dialogo per la selezione delle variabili.
4. Qui non si possono selezionare solamente variabili del progetto IPRO. Per selezionare una variabile di un altro progetto:
 a) Nella struttura ad albero del workspace visualizzata nella parte sinistra della finestra di dialogo, selezionare un progetto.
 Le variabili del progetto selezionato vengono visualizzate nell’area principale (a destra) della finestra di dialogo.
 b) Selezionare la variabile desiderata con un clic del mouse.
5. Selezionare una variabile appartenente al PRO1 o PRO2.

Per le funzioni, procedere in modo analogo.
Attenzione

zenon non verifica nell'Editor se la struttura di rete permette effettivamente a Runtime un accesso al progetto selezionato e alle sue variabili/funzioni!

Per esempio, nell'Editor si può selezionare nel progetto PRO1 una variabile del progetto di integrazione. Questo collegamento, però, funzionerà a Runtime solo se è stato avviato anche il progetto di integrazione. Questo collegamento non funzionerà su un calcolatore su cui è stato avviato solamente il progetto PRO1 (progetto di partenza).

Archivi

In un archivio possono essere registrati i valori di variabili di diversi progetti di un workspace. I valori archiviati possono poi essere filtrati, visualizzati in forma di lista o come trend, stampati o esportati come avviene per i dati di normali archivi.

ESEMPIO ARCHIVIO

1. Nel progetto IPRO aprire il nodo Server di archiviazione.
2. Creare un uovo archivio con il nome BA - BASIS.
3. Aprire il menù contestuale della lista variabili e selezionare Aggiungi variabili.
4. Si aprirà la finestra di dialogo che consente la selezione di variabili.
5. In questa finestra di dialogo si potranno selezionare non solamente variabili del progetto IPRO. Per selezionare variabili di altri progetti:
 a) Nella struttura ad albero del workspace visualizzata nella parte sinistra della finestra di dialogo, selezionare un progetto. Le variabili del progetto selezionato vengono visualizzate nell’area principale (a destra) della finestra di dialogo.
 b) Selezionare la variabile desiderata con un clic del mouse.

7. Nella lista variabili dell’archivio, prima del nome della variabile verrà indicato il nome del progetto da cui è stata presa.

![Image of the selection dialog box]

⚠️ Attenzione

Zenon non verifica nell’Editor se la struttura di rete consente effettivamente a Runtime un accesso al progetto selezionato e alle sue variabili.

Per esempio, nell’Editor si può selezionare per un archivio del progetto PRO1 una variabile del progetto di integrazione. Questo collegamento, però, funzionerà a Runtime solo se è stato avviato anche il progetto di integrazione. Su un calcolatore su cui è stato avviato solamente il progetto PRO1 (progetto di partenza), questo collegamento non funzionerà!

Dopo che la la selezione delle variabili è stata completata e la finestra di selezione è stata chiusa, verrà visualizzata una finestra di dialogo che informa l’utente che nei sistemi ridondanti la registrazione senza perdita di dati (“bumpless”) non è garantita.
Il progetto PRO1 viene eseguito in modo ridondante; un computer è il server primario, un secondo il Server-Standby.

Lo stesso vale anche per il progetto PRO2.

Il progetto di integrazione con i progetti subordinati PRO1 e PRO2 viene avviato su un terzo computer. Questo è client per i sottoprogetti.

Se vengono archiviate variabili dei progetti PRO1 e PRO2 nel progetto di integrazione, il computer ottiene tramite la rete i dati dal rispettivo server primario di PRO1 e PRO2. Se, ad esempio, il server primario di PRO1 smette di funzionare, per l’intervallo di tempo che passa fino a che il Server-Standby di PRO1 non assume il ruolo di server, si troverebbero nell’archivio delle variabili di PRO1 valori di sostituzione.

Nota: il buffer Standby della ridondanza senza perdita di dati, salva solo le variabili del progetto per cui il computer è stato configurato come uno dei due server.

Soluzione: per garantire una registrazione senza perdita di dati, l’archiviazione deve essere eseguita localmente nel sottoprogetto eseguito in modalità ridondante.

Ricette

In una ricetta si possono scrivere valori su variabili di diversi progetti del workspace.

ESEMPIO: RICETTA

1. Nel progetto IPRO aprire il nodo Ricette.
2. Creare alla voce Ricette - Ricette standard una nuova ricetta con il nome Ricetta 1.
3. Aprire il menù contestuale della Ricetta 1 e selezionare Aggiungi variabile.
4. Si aprirà la finestra di dialogo che consente la selezione di variabili.

![Image of Variabili selection dialog]

5. In questa finestra di dialogo si potranno selezionare non solamente variabili del progetto IPRO. Per selezionare variabili di altri progetti:
 a) Nella struttura ad albero del workspace visualizzata nella parte sinistra della finestra di dialogo, selezionare un progetto. Le variabili del progetto selezionato vengono visualizzate nell’area principale (a destra) della finestra di dialogo.
 b) Selezionare la variabile desiderata con un clic del mouse.
 c) Selezionare variabili dei progetti PRO1 e PRO2.
 d) Nella lista variabili della ricetta viene indicato poi, prima del nome della variabile, anche il nome del progetto di provenienza.

![Image of Recipe selection]

Per il Manager di gruppi ricette, procedere in modo analogo.

⚠️ Attenzione
zenon non verifica nell’Editor se la struttura di rete consente effettivamente a Runtime un accesso al progetto selezionato e alle sue variabili.

Per esempio, nell’Editor si può selezionare per un archivio del progetto **PRO1** una variabile del progetto di integrazione. Questo collegamento, però, funzionerà a Runtime solo se è stato avviato anche il progetto di integrazione. Su un calcolatore su cui è stato avviato solamente il progetto **PRO1** (progetto di partenza), questo collegamento non funzionerà.

Allarmi e CEL

In zenon, i messaggi di sistema e gli allarmi dei diversi progetti di un workspace possono essere visualizzati in una sola lista. Questi inserimenti possono essere filtrati, visualizzati, stampati oppure esportati come i dati di normali Listes di informazione allarmi o Liste Eventi Cronologiche.

Esempio: AML

1. **Creare un’ immagine di tipo AML**
2. **Inserire gli elementi di controllo nell’immagine usando il comando Elementi di controllo -> Inserisci template...**
3. **Creare una funzione di Cambio immagine per questa immagine.**
4. **Si aprirà il dialogo di filtro per le liste allarmi.**
5. **Aprire la scheda Progetto**
6. Selezionare i progetti che devono essere visualizzati nella AML di IPRO. (Scelta multipla: tasto Ctrl più clic del mouse.)

7. Aprire la scheda **Impostazioni colonne**.
8. Selezionare per la visualizzazione a Runtime anche la proprietà **Nome progetto**. Così si avrà la possibilità di sapere a Runtime da quale progetto proviene un allarme.

Per la Lista Eventi Cronologica, procedere in modo analogo.

5.3 Trasparenza orizzontale.

La gestione multi-progetto consente anche di realizzare la cosiddetta **trasparenza orizzontale**.
Trasparenza orizzontale significa che tutti i progetti che si trovano allo stesso livello, possono essere aperti su un PC. Il presupposto di ciò è un progetto di integrazione (A pagina: 37) con relativi strumenti di navigazione, che avvii questi progetti.

ESEMPIO

Diversi terminali appartengono allo stesso macchinario Ogni terminale ha il proprio progetto di visualizzazione. Per mezzo della **trasparenza orizzontale** è possibile aprire e gestire su ogni terminale non solo il proprio progetto, ma anche tutti gli altri. In questo modo, l’intero macchinario può essere monitorato e gestito da ogni terminale.

5.4 **Ottimizzazione di progetti con un gran numero di client**

Grandi progetti di rete, in certe circostanze con impostazioni standard, possono sovraccaricare il server primario effettuando il reload contemporaneo di più client per un lungo lasso di tempo. La dimensione del carico dipende da diversi fattori (risorse del server primario, banda disponibile ecc.).

Valori di riferimento:

- File Runtime di 10 MB oppure di dimensioni maggiori
- Più di 50 client

In questo caso si può ottimizzare l’operazione di reload in modo tale da impedire una sincronizzazione contemporanea di tutti i client. La configurazione si effettua nel file project.ini.

Possibili inserimenti INI per l’ottimizzazione del processo di reload di client nella rete di zenon:

- **RELOADDELAY_SEC**
Impostare la rete di zenon

- CLIENT

RITARDO DI RELOAD CASUALE (RELOADDELAY_SEC)

Con l'inserimento INI RELOADDELAY_SEC, il reload viene ritardato da un valore casuale.

Procedura:

1. Aprire il file project.ini nella cartella \Projekt_SQL_Ordner\FILES\zenon\system\.
 Suggerimento: Selezionare il progetto nel manager di progetto e premere la combinazione di tasti Ctrl+Alt+E. Windows Explorer aprirà la cartella \Projekt_SQL_Ordner\FILES\.
2. Passare al settore [NETZ].
3. Creare l'inserimento RELOADDELAY_SEC=[valore].
4. Selezionare per Valore un valore per il ritardo.

Nel corso del processo di reload, il sistema calcola per ogni client un ritardo casuale in secondi che si trova fra 0 e il valore selezionato. 0 significa nessun ritardo (comportamento standard). Il valore selezionato non ha alcun effetto sui progetti standalone, sul server primario o sul Server-Standby.

Nota: questo inserimento dovrebbe essere impostato solamente in caso di progetti molto grandi e di notevoli ritardi nell’esecuzione del processo di reload. Nei progetti normali, invece, le impostazioni standard sono più efficaci.

RITARDO DI RELOAD DEFINITO (CLIENTX)

Con l’inserimento INI CLIENTx, si possono definire tempi di reload differenti per i client.

1. Aprire il file project.ini nella cartella \Projekt_SQL_Ordner\FILES\zenon\system\.
 Suggerimento: Selezionare il progetto nel manager di progetto e premere la combinazione di tasti Ctrl+Alt+E. Windows Explorer aprirà la cartella \Projekt_SQL_Ordner\FILES\.
2. Passare al settore [NETZ].
3. Creare per ogni client un inserimento CLIENTx=[Valore].
 x = numerazione progressiva per i client.
 CLIENT[numero progressivo]=Nome client,[Ritardo di reload in secondi]
4. Selezionare per valore un valore per il ritardo.
 Per esempio:
 - CLIENT0=VM-CDSBG104,5
 - CLIENT1=WKS001,10
Attenzione: la numerazione dei client deve essere progressiva e senza soluzioni di continuità. Se, per es., ci sono inserimenti per CLIENT0, CLIENT1, CLIENT2, CLIENT3 e CLIENT5, il sistema considera solo quelli relativi ai seguenti client: Client0, Client1, Client2 e Client3. Il ritardo di reload configurato per Client5 viene ignorato.

Per i client senza un inserimento CLIENTx vale il ritardo di reload casuale configurato nell'inserimento RELOADDELAY_SEC.
Se anche questo inserimento è vuoto, il reload viene effettuato immediatamente.

RELOAD RITARDATO DAL SISTEMA

Il sistema ritarda il reload del Runtime se:

- L'utente apre un menù contestuale o una finestra di dialogo.
- Viene visualizzato un messaggio.

In questo caso, il reload viene eseguito solo quando questi elementi sono stati chiusi di nuovo.

6. Crittografia forte della comunicazione di rete

zenon consente di proteggere per mezzo di una crittografia forte la comunicazione nella rete di zenon. A partire dalla versione 7.0 di zenon, la crittografia forte funziona per tutti i sistemi operativi supportati e per zenon Web Client.

Quando la crittografia è attiva, la comunicazione fra server primario, Server-Standby, client e zenon Web Client avviene in modo cifrato; zenon Webserver si limita ad inoltrare i pacchetti dati e non è interessato dalla crittografia.

La comunicazione di rete era crittografata anche in precedenti versioni di zenon. Con la versione 7, però, è cambiato il metodo. Il termine "crittografia" in relazione a zenon 7 (e versioni successive) comporta una cifratura sempre maggiore.

6.1 Nozioni di base

La crittografia per il Runtime di zenon è a disposizione a partire dalla versione 7.00. Quando la crittografia è attiva, la comunicazione con le versioni precedenti di zenon non è possibile. La crittografia non pregiudica nessuna delle funzionalità di zenon.
BASI DELLA CRITTOGRAFIA A PARTIRE DALLA VERSIONE 7.00 DI ZENON

Per usare la crittografia forte della rete di zenon bisogna tenere presente quanto segue:

- La password viene cifrata specificatamente su ogni calcolatore e salvata nel file `zenon6.ini`. Questo significa:
 - La password non può essere trasferita ad un altro calcolatore copiando il file `zenon6.ini`.
 - Quando cambiano i componenti hardware, soprattutto a livello di adattatore di rete, la password può perdere la sua validità e deve essere inserita di nuovo.
- La crittografia deve sempre essere attivata o disattivata per tutti i componenti che fanno parte della rete di zenon. La comunicazione fra sistemi crittografati e non crittografati non è possibile. `zenon Web Server` fungono solamente da computer proxy e non sono interessati dalla crittografia.
- Se la crittografia viene attivata su un calcolatore, viene applicata sempre a tutti i progetti di questo computer per i quali è stata attivata la proprietà `Rete attiva`.

Info

COMPATIBILITÀ:

La crittografia non è compatibile con le versioni precedenti alla zenon 7.00 SP0. Questo significa:

<table>
<thead>
<tr>
<th>Sistema 1</th>
<th>Sistema 2</th>
<th>Comunicazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>zenon 7 crittografata</td>
<td>zenon 7 crittografata</td>
<td>si</td>
</tr>
<tr>
<td>zenon 7 non crittografata</td>
<td>zenon 7 non crittografata o zenon prima della versione 7 non crittografata</td>
<td>si</td>
</tr>
<tr>
<td>zenon 7 crittografata</td>
<td>zenon 7 non crittografata o zenon prima della versione 7 non crittografata</td>
<td>no</td>
</tr>
</tbody>
</table>

Gli errori (A pagina: 57) vengono protocollati nel file LOG del Diagnosis Viewer.

ESEMPIO

La seguente immagine mostra un esempio di una rete con server primario, Server-Standby, due client, uno zenon e due Web Client. Su tutti i dispositivi è eseguita la versione 7.00 SP0 di zenon. I dispositivi sono stati configurati nel modo seguente:
La crittografia è stata attivata sul server primario usando lo Startup Tool (A pagina: 52).

La crittografia viene attivata anche sul Server-Standby e sul client A via Trasporto Remoto (A pagina: 53) al momento del trasferimento dei file Runtime.

Il Client B e il Web Client B comunicano ancora in modalità non crittografata.

Sul Web Client A, la crittografia è attivata usando lo Startup Tool (A pagina: 52).

Visto che lo zenon Web Server non analizza i pacchetti dati, ma si limita a inoltrarli, non è necessaria alcuna forma di crittografia. Teoricamente, sul Web Server potrebbe essere installata anche una versione precedente, e, ciò nonostante, i Web Client sarebbero in grado di instaurare delle connessioni crittografate.

Questa configurazione porta al risultato seguente:

- Il Server-Standby comunica con successo con il server primario.
- Il client A può registrarsi sul server primario e scambiare dei dati.
Visto che il client B invia dei messaggi non crittografati e questi vengono rifiutati dal server primario a causa della crittografia attiva, il client B non può comunicare con il server primario e, perciò, è offline.

Non appena la crittografia viene attivata via Trasporto Remoto o tramite Startup Tool sul client B e per Encrypt network communication sul Web Client B, anche questi possono instaurare delle connessioni con il server primario.

6.2 Attivare la crittografia

La crittografia può essere attivata in modi diversi:

- Con lo Startup Tool (A pagina: 52) per il computer locale e lo zenon Web Client.
- Via Trasporto Remoto (A pagina: 53)

Suggerimento

Per attivare la crittografia in rete in modo semplice e veloce, raccomandiamo di effettuare la configurazione su un calcolatore usando il Trasporto Remoto (A pagina: 53).

6.2.1 Localmente tramite lo Startup Tool

Per attivare la crittografia sul computer locale o per lo zenon:

1. Aprire lo Startup Tool di zenon.
2. Cliccare su Application -> Options.

 Si aprirà la finestra di dialogo delle impostazioni.
3. Selezionare la scheda **Network configuration**.

![Application settings](image)

4. Attivare la checkbox **Encrypt network communication**.

5. Digitare la password e verificarla.

6. Confermare cliccando su **OK**.

CRITTOGRAFIA CONNECTOR

Per attivare la crittografia per lo SCADA Runtime Connector zenon, oppure lo zenon Analyzer, l’ HTML Web Engine, o per il Runtime Remote driver, configurare il gruppo di proprietà “Encrypt Runtime Connector communication”.

6.2.2 Via Trasporto Remoto

La crittografia può essere attivata su computer remoti via Trasporto Remoto. Questo, tuttavia, è possibile solamente se la connessione Trasporto remoto è protetta da una password.

Per attivare la crittografia via Trasporto remoto:

1. Cliccare sul pulsante corrispondente che si trova nella barra degli strumenti del Trasporto Remoto
Oppure selezionare nel menù contestuale del progetto: Trasporto Remoto -> Stabilisci collegamento

Verrà aperta la finestra di dialogo per stabilire un collegamento

2. Inserire la password di connessione, oppure crearne una nel caso non ne sia stata definita ancora nessuna.

3. Attivare la checkbox **Configurazione codifica di comunicazione di rete**

4. Cliccare su **OK**.

 Si apre la finestra di dialogo per la crittografia della comunicazione di rete

5. Attivare la checkbox **Codifica comunicazione di rete**

6. Assegnare una password (per i criteri, vedi capitolo **Password - Crittografia di rete** (A pagina: 55.).)

 Per trasferire velocemente la configurazione locale ad altri computer, la password locale può essere acquisita usando l’opzione **Acquisisci configurazione locale**.

7. Confermare la finestra di dialogo cliccando sul pulsante **OK**
6.3 Password - Crittografia di rete

Per la password per la crittografia della comunicazione in rete vale quanto segue:

- **Lunghezza minima:** 8 caratteri
- **Lunghezza massima:** 20 caratteri
 - La lunghezza visualizzata viene settata sempre a 20 caratteri, in modo tale da poter nascondere quella reale.
- **Caratteri consentiti:**
 - **Lettere:** A - Z; a - z
 - **Cifre:** 0 - 9
 - **Caratteri speciali**
- **Caratteri proibiti:**
 - **Spazio vuoto**
 - **Tasto INVIO (Tasto Return)**
- **Composizione:** una password deve contenere almeno 1 cifra e 1 lettera

Se la password impostata non corrisponde a questi criteri, verrà visualizzata una finestra di dialogo che informa dell’errore:

Verrà visualizzata una finestra di dialogo di errore anche se si inserisce in modo errato la password di conferma:
6.4 Checklist in caso di errori

In caso di errori, verificare se:

▶ Tutti i calcolatori hanno accesso alla rete e funziona la risoluzione dei nomi fra i calcolatori?
▶ La proprietà Rete attiva è stata attivata nell’Editor per questo progetto?
▶ Il Runtime di zenon viene usato nella versione 7.00 SP0, oppure in una versione successiva (rilevante in caso di crittografia attiva)?
▶ Per i progetti con crittografia, è corretta la configurazione su tutti i calcolatori?
 (L’impostazione USE_ENCRYPTION nel file zenon6.ini: la stessa su tutti i calcolatori, o 0, o 1 oppure non esistente.)
▶ La password è stata configurata in modo corretto?
▶ Su uno dei calcolatori coinvolti è stato cambiato l’hardware dopo la configurazione della crittografia?
▶ Funziona un ping sul calcolatore?
 • Sì: connessione di rete esistente, l’errore riguarda la comunicazione.
 • No: controllare la rete.
▶ È possibile instaurare una connessione con Telnet?
 • La connessione viene instaurata: entrambi i calcolatori comunicano allo stesso livello. Controllare la password.
 • La connessione viene instaurata e poi va persa: un calcolatore comunica in modo cifrato, un altro in modo non cifrato.
 • La connessione è difettosa: il Runtime di zenon non viene eseguito sul calcolatore di destinazione.

Nota: Telnet deve essere installato apposta sui sistemi operativi di Windows più recenti. La connessione avviene di regola tramite la porta 1100. Il comando Telnet è dunque open [IPAdress] 1100
▶ Sono disponibili le funzioni (di sistema operativo) necessarie (soprattutto sui terminali CE)?
 • La mancanza di funzioni necessarie fa sì che non sia possibile avviare il Runtime.
▶ Se il Service-Provider oppure uno degli algoritmi non è disponibile, viene scritto un Messaggio di errore (A pagina: 57) nel file Log al momento dello start del Runtime.

Gli errori (A pagina: 57) vengono protocollati nel file Log del Diagnosis Viewer.
6.5 Messaggi d'errore

Gli errori vengono visualizzati o nella finestra di emissione dell’Editor di zenon, oppure in pop-up e/o vengono protocollati nei file Log del Diagnosis Viewer.

NESSUNA CONNESSIONE

Se un client è stato configurato con una password di crittografia errata (diversa da quella sul server primario), è possibile verificarlo dagli eventi seguenti:

- Il client è offline, nonostante il server primario sia raggiungibile via ping.
- Il server primario scrive dei messaggi di errore nel file LOG:

 SysMod Error: Serialize in Object Project: [Nome progetto] Modul: [Numero modulo]

 Oppure:

 NET Error During Decryption [Numero errore]

POP-UP E MESSAGGI DI ERRORE

Il sistema indica il verificarsi di errori di crittografia mediante delle finestre d’avviso (A pagina: 57) (pop-up) e inserimenti nei file di LOG (A pagina: 60), oppure nella Finestra di emissione (A pagina: 59) di zenon.

6.5.1 Messaggi di errore in pop-up

STARTUP TOOL E WEB CLIENT

I seguenti messaggi di errore vengono emessi dallo zenon Startup Tool come pop-up per la crittografia locale, oppure dall’Encrypt Network Communication Tool per la configurazione dello zenon Web Client.

Questi messaggi sono sempre in lingua inglese. I messaggi del Runtime stesso, invece, sono nella lingua che è stata impostata.
<table>
<thead>
<tr>
<th>Messaggio di errore</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>The password has to be entered in both text boxes!</td>
<td>Configurando la crittografia, l’utente ha lasciato vuoto uno dei due campi di inserimento (Password oppure Conferma password).</td>
</tr>
<tr>
<td>The passwords you typed do not match. Please retype the password in both boxes.</td>
<td>Il contenuto del campo di inserimento per la conferma della password è diverso da quello del campo di inserimento per la password.</td>
</tr>
<tr>
<td>The network password does not fullfill the password criterias!</td>
<td>La password inserita non soddisfa i criteri. I criteri di validità della password vengono visualizzati nel messaggio di errore.</td>
</tr>
<tr>
<td>Password criterias:</td>
<td></td>
</tr>
<tr>
<td>- Minimum length = 8</td>
<td></td>
</tr>
<tr>
<td>- Maximum length = 20</td>
<td></td>
</tr>
<tr>
<td>- At least one character of the latin charset</td>
<td></td>
</tr>
<tr>
<td>- At least one number</td>
<td></td>
</tr>
<tr>
<td>- No spaces</td>
<td></td>
</tr>
<tr>
<td>The network password could not be encrypted!</td>
<td>Si è verificato un errore nella cifratura della password di rete.</td>
</tr>
<tr>
<td>The network encryption configuration in the file zenon6.ini is invalid.</td>
<td>Quando è stata aperta la scheda Network configuration, il sistema ha constatato che il file zenon6.ini non contiene una configurazione valida per la crittografia di rete. Si deve inserire una nuova configurazione.</td>
</tr>
<tr>
<td>Please enter a new configuration.</td>
<td></td>
</tr>
<tr>
<td>The network encryption password in zenon6.ini is invalid.</td>
<td>La password che il sistema legge dal file zenon6.ini non è valida e deve essere inserita nuovamente.</td>
</tr>
<tr>
<td>La password per la crittografia di rete non è valida e deve essere inserita nuovamente!</td>
<td>Messaggio che compare al momento dello start del Runtime se la password non può essere verificata.</td>
</tr>
</tbody>
</table>

TRASPORTO REMOTO

I seguenti messaggi di errore vengono visualizzati come pop-up dal **Trasporto Remoto** quando viene crittografata la comunicazione con il computer remoto.
Messaggi di errore

<table>
<thead>
<tr>
<th>Messaggio di errore</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per la configurazione della crittografia di rete la connessione tramite trasporto remoto deve essere protetta da password!</td>
<td>Il sistema ha cercato di configurare la crittografia remota senza proteggere la connessione del Trasporto Remoto con una password.</td>
</tr>
<tr>
<td>La password dev'essere inserita in entrambi campi!</td>
<td>Configurando la crittografia, l'utente ha lasciato vuoto uno dei due campi di inserimento (Password oppure Conferma password).</td>
</tr>
<tr>
<td>Le due password non corrispondono!</td>
<td>Il contenuto del campo di inserimento per la conferma della password è diverso da quello del campo di inserimento per la password.</td>
</tr>
<tr>
<td>La password inserita non soddisfa i criteri!</td>
<td>La password inserita non soddisfa i criteri. I criteri di validità della password vengono visualizzati nel messaggio di errore.</td>
</tr>
<tr>
<td>Criteri per la validità della password:</td>
<td>Durante la cifratura della password di rete si è verificato un errore. Se questo errore si verifica durante la configurazione via Trasporto Remoto, viene scritta una segnalazione di errore più dettagliata nel Log.</td>
</tr>
<tr>
<td>al massimo 20 caratteri</td>
<td></td>
</tr>
<tr>
<td>E' avvenuto un errore durante la cifratura della password!</td>
<td>Non è stato possibile decifrare la password salvata nello (zenon6.ini. Se questo errore si verifica durante la configurazione via Trasporto Remoto, viene scritta una segnalazione di errore più dettagliata nel Log.</td>
</tr>
<tr>
<td>Nella decifrazione della crittografia della password di rete dallo zenon6.ini si è verificato un errore!</td>
<td>La password letta dallo (zenon6.ini) non è valida. È necessario procedere all’inserimento di una nuova password.</td>
</tr>
<tr>
<td>La configurazione della crittografia nello zenon6.ini non è valida e deve essere reinserita!</td>
<td></td>
</tr>
</tbody>
</table>

6.5.2 Messaggi di errore nella finestra di emissione

Gli errori vengono visualizzati nella finestra di emissione in forma di messaggi:
<table>
<thead>
<tr>
<th>Messaggio</th>
<th>Livello</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il server segnala un errore nel mettere insieme i dati per la configurazione della crittografia!</td>
<td>ERRORE</td>
<td>Lo zenSysSrv remoto segnala un errore nella compilazione delle informazioni per la crittografia della password per la crittografia di rete. Non è stato possibile leggere le informazioni adapter.</td>
</tr>
<tr>
<td>*** Configura la crittografica della comunicazione di rete sul sistema di destinazione:</td>
<td></td>
<td>Questa segnalazione si trova all’inizio del messaggio finale che appare dopo la realizzazione della configurazione della crittografia di un apparecchio remoto tramite Trasporto Remoto. Segue poi una segnalazione concernente il successo della configurazione remota.</td>
</tr>
<tr>
<td>Il server segnala un errore nel salvataggio della configurazione della crittografia!</td>
<td>ERRORE</td>
<td>Il Remote zenSysSrv segnala un errore nel salvataggio della configurazione della crittografia sull’apparecchio remoto. La configurazione non è stata salvata.</td>
</tr>
<tr>
<td>La configurazione è stata salvata con successo sul server.</td>
<td>SEGNALAZIONE</td>
<td>Il Remote zenSysSrv segnala che la configurazione della crittografia è stata salvata con successo.</td>
</tr>
<tr>
<td>La versione del Remote zenSysSrv è troppo bassa! La crittografia non può essere configurata!</td>
<td>ERRORE</td>
<td>Il sistema ha cercato di configurare la crittografia su un apparecchio remoto che ha una versione di zenSysSrv precedente a 7.00 SP0. La crittografia è disponibile solo a partire dalla versione zenon 7.00 SP0; per questo motivo un zenSysSrv precedente non è in grado di configurarla.</td>
</tr>
</tbody>
</table>

6.5.3 Messaggi di errore nei file LOG.

Gli errori nella comunicazione crittografata in rete vengono documentati come inserimenti di LOG. Gli **Error-ID** dei messaggi di errore nella seguente tabella sono System-Error-Codes oppure COM-Error-Codes. Informazioni più dettagliate sull’argomento si trovano nella documentazione MSDN.
<table>
<thead>
<tr>
<th>Inserimento nei LOG.</th>
<th>Livello</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET Error During Acquiring Cryptography Context [Error-ID]</td>
<td>ERRORS</td>
<td>La creazione di un service provider per la crittografia non è riuscita.</td>
</tr>
<tr>
<td>NET Error During Creating Hash [Error-ID]</td>
<td>ERRORS</td>
<td>La creazione di un valore Hash non è riuscita.</td>
</tr>
<tr>
<td>NET Error During Using Hash [Error-ID]</td>
<td>ERRORS</td>
<td>La modifica di un valore Hash non è riuscita.</td>
</tr>
<tr>
<td>NET Error During Destroying Hash [Error-ID]</td>
<td>ERRORS</td>
<td>Il rilascio di un valore Hash non più necessario non è riuscito.</td>
</tr>
<tr>
<td>NET Error During Deriving Key [Error-ID]</td>
<td>ERRORS</td>
<td>La creazione della chiave per la crittografia simmetrica non è riuscita.</td>
</tr>
<tr>
<td>NET Error During Configuring Key [Error-ID]</td>
<td>ERRORS</td>
<td>L’impostazione del parametro per la crittografia simmetrica non è riuscita.</td>
</tr>
<tr>
<td>NET Error Cryptography Not Initialized!</td>
<td>ERRORS</td>
<td>Una funzione di crittografia o decifrazione è stata richiamata, ma l’inizializzazione dei parametri necessari (service provider, chiave) non è riuscita.</td>
</tr>
<tr>
<td>NET Error Invalid Pointer passed!</td>
<td>ERRORS</td>
<td>Ad una funzione di crittografia o decifrazione sono stati assegnati dei parametri non validi.</td>
</tr>
<tr>
<td>NET Error Message Length Must Not Be 0!</td>
<td>ERRORS</td>
<td>La chiamata della funzione di crittografia o decifrazione è avvenuta con un messaggio vuoto.</td>
</tr>
<tr>
<td>NET Error During Buffer Length Calculation [Error-ID]</td>
<td>ERRORS</td>
<td>Il calcolo della grandezza necessaria del buffer per la crittografia non è riuscito.</td>
</tr>
<tr>
<td>NET Error Buffer Length Must Not Be 0!</td>
<td>ERRORS</td>
<td>Il buffer per la crittografia o decifrazione non è stato creato.</td>
</tr>
<tr>
<td>NET Error During Decryption 0x%x</td>
<td>ERRORS</td>
<td>Nel corso della decifrazione si è verificato un errore.</td>
</tr>
<tr>
<td>NET Error During Encryption 0x%x</td>
<td>ERRORS</td>
<td>Nel corso della crittografia si è verificato un errore.</td>
</tr>
<tr>
<td>NET Error: Encryption Is Required And Project [Projekt] Received Plaintext Network Message</td>
<td>ERRORS</td>
<td>La crittografia è attiva ed è arrivato un messaggio non crittografato. In questo caso il messaggio viene rifiutato.</td>
</tr>
<tr>
<td>NET Error: Encryption Is Not Supported And Project [Projekt] Received Encrypted Network Message</td>
<td>ERRORS</td>
<td>La crittografia non è attiva ed è arrivato un messaggio crittografato. In questo caso il messaggio viene rifiutato.</td>
</tr>
<tr>
<td>NET Cryptography Successfully Initialized</td>
<td>DEBUG</td>
<td>I parametri necessari per la crittografia e la decifrazione sono stati inizializzati con successo. I parametri vengono inizializzati all’avvio del Runtime.</td>
</tr>
<tr>
<td>NET Uninitializing Cryptography</td>
<td>DEBUG</td>
<td>I parametri necessari per la crittografia e la decifrazione vengono rilasciati. Questo accade quando</td>
</tr>
<tr>
<td>Error Message</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>NET Error During Buffer Size Calculation [Error ID]</td>
<td>ERRORS</td>
<td>Si è verificato un errore nel calcolo della grandezza necessaria del buffer per compilare le informazioni necessarie per crittografia e decifrazione della password di rete.</td>
</tr>
<tr>
<td>NET Error During Buffer Size Calculation: No Adapters</td>
<td>ERRORS</td>
<td>Il computer non ha un adattatore di rete. Per questa ragione la password di rete non può essere crittografata e decifrata.</td>
</tr>
<tr>
<td>NET Error During Adapter Info Query [Error ID]</td>
<td>ERRORS</td>
<td>Si è verificato un errore quando durante la lettura delle informazioni dell’adattatore per la crittografia e decifrazione della password di rete.</td>
</tr>
<tr>
<td>NET Error Password Not Properly Formatted</td>
<td>ERRORS</td>
<td>L'HexDump della password di rete cifrata ha un formato non valido.</td>
</tr>
<tr>
<td>NET Error During Decrypting Password [Error ID]</td>
<td>ERRORS</td>
<td>Si è verificato un errore nella decifrazione della password di rete.</td>
</tr>
<tr>
<td>NET Error During Encrypting Password [Error ID]</td>
<td>ERRORS</td>
<td>Si è verificato un errore nella crittografia della password di rete.</td>
</tr>
<tr>
<td>NET Cryptography Is Disabled</td>
<td>DEBUG</td>
<td>La crittografia della comunicazione in rete è disattivata.</td>
</tr>
<tr>
<td>NET Error No Password</td>
<td>ERRORS</td>
<td>La crittografia è attiva, ma non è stata inserita nessuna password.</td>
</tr>
<tr>
<td>NET Error Password Could Not Be Decrypted</td>
<td>ERRORS</td>
<td>Non è stato possibile decifrare la password per la crittografia di rete.</td>
</tr>
<tr>
<td>NET Password successfully loaded</td>
<td>DEBUG</td>
<td>La password per la crittografia di rete è stata caricata con successo.</td>
</tr>
<tr>
<td>Network Cryptography Disabled By Remote Configuration</td>
<td>DEBUG</td>
<td>Lo zenSysSrv segnala che la crittografia del traffico di rete è stata disattivata sul calcolatore dalla configurazione del Trasporto Remoto.</td>
</tr>
<tr>
<td>Network Cryptography Enabled By Remote Configuration</td>
<td>DEBUG</td>
<td>Lo zenSysSrv segnala che la crittografia del traffico di rete è stata attivata sul calcolatore dalla configurazione del Trasporto Remoto.</td>
</tr>
<tr>
<td>Network Cryptography Remote Configuration Error</td>
<td>ERRORS</td>
<td>Una configurazione inviata dal Trasporto Remoto per la crittografia di rete è errata.</td>
</tr>
<tr>
<td>Error During Buffer Size Calculation [Error ID]</td>
<td>ERRORS</td>
<td>Si è verificato un errore nel calcolo della grandezza necessaria del buffer per compilare le informazioni necessarie per crittografia e decifrazione della password di rete per la configurazione tramite Trasporto Remoto.</td>
</tr>
<tr>
<td>Error During Buffer Size</td>
<td>ERRORS</td>
<td>Il computer non ha un adattatore di rete. Per questa ragione la password di rete non può essere crittografata e decifrata.</td>
</tr>
<tr>
<td>Calculation: No Adapters</td>
<td>ragione la password di rete non può essere cifrata o decifrata e, quindi, non può essere settata via Trasporto Remoto (deve essere connessa via COM). L’uso della crittografia di rete su un calcolatore senza adattatore di rete, però, non ha senso.</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Error During Adapter Info Query [Error ID]</td>
<td>ERRORS Si è verificato un errore durante la lettura delle informazioni dell’adattatore per la crittografia e decifrazione della password di rete per la configurazione via Trasporto Remoto.</td>
<td></td>
</tr>
<tr>
<td>NET Error During Decrypting Password: The Password is Invalid!</td>
<td>ERRORS La password non è più valida visto che i dati iniziali per la crittografia in relazione al dispositivo sono cambiati. Questo errore può essere corretto configurando di nuovo la password. Tuttavia il processo di decifrazione viene interrotto già prima del controllo di validità della password, perché la vecchia password non può essere decifrata con i nuovi dati di decifrazione. Questo causa l’errore "NET Error During Decrypting Password 0x80090005", che viene normalmente visualizzato invece di "NET Error During Decrypting Password: The Password is Invalid!". Un’altra conseguenza è che la password, che ha perso la sua validità sul computer in questione, causa la visualizzazione di messaggi di errore quando i pacchetti di rete vengono inviati o ricevuti. Il messaggio di errore "NET Error Cryptography Not Initialized!" verrà scritto nel file di LOG.</td>
<td></td>
</tr>
<tr>
<td>Connector-Container: Decryption failed. Perhaps wrong encryption key.</td>
<td>ERRORS Decrittografia del pacchetto dati ricevuto dal Connector Client non riuscita.</td>
<td></td>
</tr>
</tbody>
</table>

7. zenon sul Terminal Server

Il Runtime di zenon può essere utilizzato anche in combinazione con una soluzione terminal-server.

Limitazioni:

- L’Editor non può essere eseguito su un Terminal Server.
- La simulazione progetto non è disponibile per i client sul Terminal Server.
Bisogna tenere presente che il nome del Terminal Client venga risolto correttamente. Questo significa: il nome del dispositivo che avvia la connessione terminal-server, è il nome del client per la rete di zenon.

Attenzione: assicurarsi di aver aperto tutte le porte necessarie quando si usa un firewall.

Ci sono diversi produttori che offrono soluzioni terminal-server. Tutti i test con zenon sono stati effettuati con Windows Terminal Server (Windows Remote Desktop Services).

Per poter usare zenon con un Terminal Server, la registrazione della licenza deve avvenire con un dongle di rete.

PIÙ Istanze DEL Runtime

Su un computer può essere lanciata sempre solo un’istanza del Runtime di zenon alla volta. Questo indipendentemente dal fatto se il Runtime viene avviato come file EXE, come zenon Web Client, oppure come Runtime Control (OCX).

Eccezione: Sul Terminal Server o sul Terminal Client può essere avviata un’istanza Runtime pro utente, come file EXE, come zenon Web Client, oppure come Runtime Control (OCX). All’interno di un contesto utente, può essere eseguita sempre solo 1 istanza alla volta.

7.1 Come funziona il terminal server

Con i Terminal Server è possibile rendere disponibili dati e applicazioni centralizzate, indipendentemente dal dispositivo finale. Le soluzioni Terminal Server consentono di avviare diverse istanze shell (desktop) separate le une dalle altre sul Terminal Server. Se un client si connette al Terminal Server, viene creata una nuova istanza shell, e al client viene assegnata una propria interfaccia grafica. Le applicazioni vengono eseguite sul Terminal Server stesso e i dati sono salvati sul Terminal Server. Sul client avviene semplicemente l’immissione (tramite tastiera, mouse ecc,) e l’emissione (visualizzazione, audio, ecc.).

Non tutti i software sono compatibili con Terminal Server.
7.2 **Vantaggi e svantaggi**

L’uso di zenon su un Terminal Server ha i seguenti vantaggi e svantaggi:

VANTAGGI
- Si deve effettuare la manutenzione di un solo computer (il Terminal Server).
- I client non devono fornire delle performance particolarmente alte (Thin Clients).
- I client possono avere dei sistemi operativi differenti (Windows, Windows CE, Linux, Unix, MacOS, iOS, Android ecc.).
- Elevato grado di sicurezza dei dati, visto che nessun dato viene salvato sul client.

SVANTAGGI
- Tutti i programmi avviati di tutte le istanze sono eseguiti su un computer (il Terminal Server). Questo:
 - Deve avere una capacità tale da poter eseguire tutti i programmi lanciati.
 - Deve avere una RAM sufficiente per tutti i programmi lanciati.
- Tutte le interfacce devono essere condivise. Ad esempio, adattatore di rete, porte COM, porte parallele.
- Il carico della rete può essere considerevole se c’è un numero elevato di client (per es. in caso di trasferimento di dati grafici).
- La risoluzione dell’immagine viene definita dal primo client che è stato avviato. L’uso di più risoluzioni può essere implementato sul Terminal Server usando un inserimento nello zenon.ini (SERIALIZE=1). In questo modo, tutte le immagini vengono ricalcolate per ogni client, il che fa aumentare ancora di più la prestazione richiesta al Terminal Server.

7.3 **Modalità di funzionamento di zenon sul Terminal Server**

Su un Terminal Server, il funzionamento come:
- zenon Client è possibile senza limitazioni.
- Sistemi standalone di zenon ha senso ed è possibile solo:
 - come progetto di integrazione sovraordinato per avviare più sotto-progetti client.
 - senza driver, connessioni a banche dati ecc.
- zenon server primario non è possibile
RAPPRESENTAZIONE SCHEMATICA

Esempio di topologia di una rete Terminal Server con zenon:

<table>
<thead>
<tr>
<th>PC</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime Server</td>
<td>zenon Runtime Server primario</td>
</tr>
<tr>
<td>Terminal Server</td>
<td>Terminal Server e un numero x di Runtime Client</td>
</tr>
<tr>
<td>Terminal RDP Client</td>
<td>Terminal Client (solo immissione ed emissione)</td>
</tr>
<tr>
<td>A - D</td>
<td></td>
</tr>
</tbody>
</table>
7.4 Impostazioni obbligatorie

Per far sì che il Runtime di zenon possa essere avviato più volte sul Terminal Server, si devono effettuare alcune impostazioni. Le impostazioni per la registrazione, la risoluzione dello schermo e il servizio di trasmissione, possono essere effettuate usando lo zenon Startup Tool.

Info

I seguenti parametri vengono settati automaticamente quando si effettua la registrazione via Startup Tool:

- Inserimenti INI:
 - `[TERMINAL]
 CLIENT=1
 - `[DEFAULT]
 SERIALIZE=1

- Registrazione di `ZenSysSrv.exe` come servizio.
- Annullamento della registrazione `ZenDBSrv.exe`

IMPOSTAZIONI GENERALI

1. **Registrazione**

 Registrare l’uso sul Terminal Server via zenon Startup Tool.
 In alternativa, si possono configurare manualmente i corrispondenti inserimenti INI.

 Inserimento nel file `zenon6.ini`:

 [TERMINAL]
 `CLIENT=1`

 - 1: Il Runtime può essere avviato più volte; tutte le impostazioni per il funzionamento Terminal server vengono eseguire automaticamente dal Runtime.
 - 0: Il Runtime può essere avviato solo una volta per sessione Terminal Server. L’uso sul Terminal Server non è possibile (impostazione standard).

2. **Adattamento automatico della risoluzione immagine**

 L’impostazione standard prevede che sia il primo client sul Terminal Server a definire la risoluzione dell’immagine. Questa impostazione può essere modificata sul Terminal Server con il seguente inserimento nel file `zenon6.ini`:

 [DEFAULT]
 `SERIALIZE=1`

 - 0: risoluzione immagine individuale, tutte le immagini vengono ricalcolate per ogni client.
 - 1: il primo client avviato detta la risoluzione immagine.
3. **Trasferimento**

Il servizio di trasporto (ZenSysSrv.exe) deve essere registrato a avviato come servizio Windows e non come file Standard-Exe. Questa impostazione viene effettuata automaticamente in caso della registrazione via Startup Tool; ma può essere settata anche manualmente.

Impostazione manuale:

a) Avviare il programma dalla riga di comando mediante l’opzione `-service`.

 Per esempio: `C:\Programme (x86)\COPA-DATA\zenon800\zenSysSrv.exe -service`

b) Poi avviare il Windows Service Manager. Il servizio verrà avviato automaticamente ad ogni riavvio del computer.

Nota: il setup registra il servizio di trasporto sempre come Standard-EXE. Per questo motivo, il servizio di trasporto deve essere registrato nuovamente come servizio Windows dopo ogni nuova installazione.

4. **Cartella Runtime**

![Attenzione](https://via.placeholder.com/150)

Attenzione

Se è settato `TERMINAL=1`, la simulazione progetto non è più disponibile.

RELOAD SELETTIVO DI SINGOLI PROGETTI

I progetti possono essere sincronizzati anche in modo selettivo. In questo caso, i client sincronizzano i progetti solamente se sono state fatte delle modifiche. Per attivare il meccanismo di reload selettivo:

1. Aprire il file `zenon6.ini` con un Editor di testo.

2. Passare al settore [TERMINAL].

3. Modificare o creare l’inserimento: `CLIENT_NO_FILE_ALIGN=`

 Valori possibili:

 - 0: i progetti vengono sempre ricaricati da tutti i client
 - 1: Allineamento selettivo attivo. Solo il client di zenon che viene avviato nella sessione console del Terminal Server, sincronizza i file Runtime con il server di zenon

Dopo la sincronizzazione dei file Runtime, il "console client" scrive il file `reloadindicator.tmp` nella cartella che contiene il file `project.ini` del progetto. I "session client" sul Terminal Server verificano ogni 10 secondi se questo file è disponibile. Se il file c’è e il suo timestamp è più recente della data dell’ultimo reload, viene avviata automaticamente una session-client.
INSERIMENTO ZENON6.INI PER IL RELOAD SELETTIVO

[TERMINAL]
CLIENT=1
CLIENT_NO_FILE_ALIGN=1

[DEFAULT]
SERIALIZE=1

Info
Ulteriori informazioni su questo argomento si trovano nella parte della guida relativa ai file di configurazione, nel capitolo Terminal Server [TERMINAL].

7.5 Confronto fra zenon Remote Desktop e Terminal Server

Le principali differenze fra la soluzione Terminal Server e il Remote Desktop di zenon sono le seguenti:

<table>
<thead>
<tr>
<th>Connessione zenon Remote Desktop</th>
<th>Connessione Terminal Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutte le stazioni connesse vedono sempre lo stesso desktop. Se, per esempio, un utente lancia un programma, tutti vedono lo stesso programma, lo stesso puntatore del mouse, gli stessi inserimenti effettuati con la tastiera, ecc.</td>
<td>Ogni stazione connessa ha un proprio desktop - una propria istanza. Solo questa vede cosa accade. Le azioni del mouse e gli inserimenti effettuati con la tastiera riguardano solamente questa istanza.</td>
</tr>
<tr>
<td>Questo significa anche che: In ogni istanza può essere avviato separatamente un programma, per es. un Editor di testi. Il programma sarà poi eseguito sul Terminal Server più volte e consumerà anche più risorse.</td>
<td></td>
</tr>
</tbody>
</table>

Info
Ulteriori informazioni sull’argomento si trovano nella parte della guida dedicata allo zenon Remote Desktop
8. Gestire e controllare la topologia di rete

La topologia di rete viene visualizzata in una scheda propria del manager di progetto.

La visualizzazione è divisa in tre settori:

- **Albero topologico** (A pagina: 70) (in alto a sinistra): mostra i progetti attivi; il progetto globale non viene visualizzato.

- **Albero risultati** (A pagina: 72) (in alto a destra): solo una visualizzazione di risultati; rappresenta l’albero della topologia di un computer selezionato.

- **Lista computer** (A pagina: 73) (sotto): lista e configurazione dei computer in rete.

8.1 Albero topologico

L’albero topologico mostra i progetti attivi in forma gerarchica.
Gestire e controllare la topologia di rete

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome progetto</td>
<td>Viene definito nella scheda "Albero di progetto" e non può essere modificato in questa sede.</td>
</tr>
<tr>
<td>Rete attiva</td>
<td>Mostra se l’opzione “rete” è attiva per questo progetto. L’impostazione può essere modificata usando la proprietà Rete attiva.</td>
</tr>
</tbody>
</table>
| | ▶ **Sì**
| | Il progetto è un progetto di rete.
| | ▶ **No**
| | Il progetto non è un progetto di rete. |
| **Server 1** | Visualizza il server primario definito per questo progetto. L’impostazione può essere modificata con il menù contestuale, il simbolo nella barra degli strumenti oppure la proprietà **Server 1**. |
| **Server 2** | Visualizza il Server-Standby definito per questo progetto. L’impostazione può essere modificata con il menù contestuale, il simbolo nella barra degli strumenti oppure la proprietà **Server 2**. |

8.1.1 Barra degli strumenti e menù contestuale
<table>
<thead>
<tr>
<th>Proprietà</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imposta PC come Server primario</td>
<td>Definisce il computer evidenziato nella Lista computer (A pagina: 73) come server primario per il progetto selezionato nell’albero topologico.</td>
</tr>
<tr>
<td>Imposta PC come Server standby</td>
<td>Definisce il computer evidenziato nella Lista computer (A pagina: 73) come Server-Standby per il progetto selezionato nell’albero topologico.</td>
</tr>
<tr>
<td>Elimina Server primario</td>
<td>Cancella il server primario definito per il progetto evidenziato.</td>
</tr>
<tr>
<td></td>
<td>Nota: il computer configurato viene cancellato dalla proprietà Server 1.</td>
</tr>
<tr>
<td>Elimina Server Standby</td>
<td>Cancella il Server-Standby definito per il progetto evidenziato.</td>
</tr>
<tr>
<td></td>
<td>Nota: il computer configurato viene cancellato dalla proprietà Server 2.</td>
</tr>
<tr>
<td>Help (Simbolo ?)</td>
<td>Apre la guida online.</td>
</tr>
</tbody>
</table>

8.2 Albero risultati

L’albero risultati visualizza l’albero di progetto del computer selezionato nella Lista computer (A pagina: 73) a partire dal progetto che è impostato come progetto di partenza per il computer selezionato; l’albero risultati visualizza le impostazioni di questo progetto.

L’albero risultati è vuoto se:

- Il progetto di partenza del computer selezionato non è stato trovato.
- E’ stato selezionato più di un computer della lista.
Gestire e controllare la topologia di rete

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome progetto</td>
<td>I progetti che sono assegnati al computer selezionato.</td>
</tr>
<tr>
<td>Ruolo</td>
<td>Ruolo del computer:</td>
</tr>
<tr>
<td></td>
<td>- Server primario</td>
</tr>
<tr>
<td></td>
<td>- Server-Standby</td>
</tr>
<tr>
<td></td>
<td>- Client</td>
</tr>
<tr>
<td>Server primario</td>
<td>Nome del computer che funge da server primario a Runtime.</td>
</tr>
<tr>
<td>Server-Standby</td>
<td>Nome del computer che funge da Server Standby a Runtime.</td>
</tr>
<tr>
<td>Verifica del risultato</td>
<td>Visualizza in forma dettagliata i messaggi di errore (A pagina: 78) relativi alla verifica topologica.</td>
</tr>
</tbody>
</table>

8.3 Lista computer

La lista computer mostra i calcolatori configurati e ne permette la configurazione. La lista si riferisce al workspace ed è salvata nel file workspace (*wsp6)*.

E' possibile ordinare e filtrare le colonne di questa lista. La larghezza delle colonne può essere modificata cliccando con il tasto destro del mouse.

![Lista computer](image-url)
<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nome PC</td>
<td>Nome del computer. Può essere modificato:</td>
</tr>
<tr>
<td></td>
<td>▶ Cliccando nella cella:</td>
</tr>
<tr>
<td></td>
<td>▶ Inserimento Modifica PC nel menù contestuale o nella barra degli strumenti. Apre la finestra di dialogo per configurare i computer (A pagina: 76) nella rete.</td>
</tr>
<tr>
<td></td>
<td>▶ Proprietà Nome PC.</td>
</tr>
<tr>
<td>Progetto di partenza</td>
<td>Progetto di partenza assegnato al computer. Può essere modificato:</td>
</tr>
<tr>
<td></td>
<td>▶ Cliccando nella cella:</td>
</tr>
<tr>
<td></td>
<td>▶ Inserimento Progetto di partenza nel menù contestuale oppure nella barra degli strumenti. Imposta come progetto di partenza quello selezionato nell’albero topologico (A pagina: 70).</td>
</tr>
<tr>
<td></td>
<td>▶ Proprietà Progetto di partenza.</td>
</tr>
<tr>
<td>Cartella Runtime del progetto di partenza</td>
<td>Cartella per file di progetto del computer di destinazione. I file del progetto di partenza vengono salvati in questa cartella. Tutti gli altri progetti in relazione ad esso, corrispondono alla struttura della Cartella Runtime impostata sul computer locale.</td>
</tr>
<tr>
<td></td>
<td>Ad esempio:</td>
</tr>
<tr>
<td></td>
<td>I sotto-progetti sono salvati in C:\Projekte.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>▶ Cliccando due volte sul computer:</td>
</tr>
<tr>
<td></td>
<td>▶ Cliccando nella cella: possibile un inserimento manuale.</td>
</tr>
<tr>
<td>Verifica del risultato</td>
<td>Mostra il risultato del controllo topologico.</td>
</tr>
<tr>
<td></td>
<td>▶ OK:</td>
</tr>
</tbody>
</table>
8.3.1 Barra degli strumenti e menù contestuale

<table>
<thead>
<tr>
<th>Inserimento</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggiungi PC...</td>
<td>Apre la finestra di dialogo per la configurazione dei computer (A pagina: 76) nella rete.</td>
</tr>
<tr>
<td>Modifica PC...</td>
<td>Apre la finestra di dialogo per la configurazione dei computer (A pagina: 76) in rete con i dati inseriti per questo computer.</td>
</tr>
</tbody>
</table>
| Elimina PC | Elimina il computer dalla topologia dopo una richiesta di conferma.
Attenzione: la cancellazione di server primario o Server-Standby porta al verificarsi di gravi errori nella topologia. |
| Imposta il progetto di partenza | Imposta come progetto di partenza quello selezionato nell’albero topologico (A pagina: 70). |
| Trasferire i file Runtime di tutti i progetti del terminale. | Trasferisce tutti i progetti validi per il computer selezionato al calcolatore di destinazione. Il risultato viene visualizzato nella finestra di emissione. |
| Guida (Simbolo ?) | Apre la guida online. |
8.3.2 Finestra di dialogo di configurazione computer in rete

Le seguenti impostazioni sono necessarie per configurare i computer:
<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
| **Nome PC** | Cliccando sul pulsante ... si apre la finestra di dialogo per selezionare un computer fra quelli della lista dei calcolatori disponibili attualmente nella rete.
Nota: se ci sono molti computer disponibili in rete, l'apertura di questa finestra di dialogo può durare un po' di tempo. |
| **Progetto di partenza** | Selezione del progetto di partenza fra quelli del menù a tendina.
Vengono visualizzati tutti i progetti esistenti nel workspace caricato attualmente. |
| **Cartella Runtime del progetto di partenza** | Cartella per file di progetto del computer di destinazione. I file del progetto di partenza vengono salvati in questa cartella. Tutti gli altri progetti in relazione ad esso, corrispondono alla struttura della Cartella Runtime impostata sul computer locale.
Suggerimento: usare il nome del progetto come nome della cartella per creare automaticamente la stessa struttura esistente sul computer di progettazione.
Per esempio:
Nome progetto= I_Project
Alla voce Cartella runtime del progetto di partenza inserire:
C:\Projects\I_Project
I sotto-progetti vengono salvati in relazione a questo percorso in
C:\Projects\Projektnam, per es.:
Il nome progetto è SubProject1; in questo caso la cartella Runtime si trova in
C:\Projects\SubProject1.
Requisito
Le cartelle Runtime sono state lasciate con le impostazioni standard e i progetti sono stati creati a livello file.
In caso contrario può accadere che i sotto-progetti non possano essere trasferiti, perché la cartella relativa non è generabile da parte del progetto di partenza.
Esempio:
Il progetto di integrazione ha la seguente directory impostata come cartella Runtime: C:\Workspace\Projects\I_Project. La cartella Runtime impostata per il sotto-progetto è: C:\Subproject. La cartella Runtime del progetto di partenza viene impostata su C:\Project. Il sotto-progetto non può essere trasferito perché la cartella relativa sarebbe ..\..\Project. Questo non può funzionare perché la cartella Runtime per il sotto-progetto si troverebbe "sotto" C:\.
Soluzione: impostare la proprietà di progetto Cartella Runtime in modo corretto. Il modo migliore di farlo è quello di fare in modo che le cartelle Runtime si trovino allo stesso livello. |
Gestire e controllare la topologia di rete

CHIUDERE LA FINESTRA DI DIALOGO

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Applica le impostazioni e chiude la finestra di dialogo.</td>
</tr>
<tr>
<td>Annulla</td>
<td>Annulla tutte le modifiche e chiude la finestra di dialogo.</td>
</tr>
<tr>
<td>Guida</td>
<td>Apre la guida online.</td>
</tr>
</tbody>
</table>

8.4 Messaggi di errore della verifica della topologia

La verifica topologica viene effettuata ogni volta che si modificano le impostazioni della topologia. Così si può vedere subito l’effetto di ogni modifica. La topologia viene controllata anche quando si passa alla visuale topologica.

TEST IMPLEMENTATI

- Nella struttura ad albero esiste il progetto definito nella topologia?
- E’ stato definito un server primario?
- Sono stati impostati come server primario e Server-Standby dei computer diversi?
- Il client può raggiungere il suo Server primario/Server-Standby?
- Il server primario può raggiungere i suoi client?
- Il Server-Standby può raggiungere i suoi client?
- Esiste nella topologia il server primario per un progetto?
- Esiste nella topologia il Server-Standby per un progetto?
- Un computer compare più di una volta nel percorso dal client al server primario?

NON SI VERIFICA SE:

- Un client viene aggiornato dal server primario solamente su un percorso, oppure esistono diversi percorsi?

DA CLIENT A SERVER

- Il client raggiunge il suo server primario attraverso la catena dei server primari?
- Si è passati da un computer che esegue il routing al suo Server-Standby?

 Info: Il server deve essere raggiungibile per il client anche tramite il Server standby del progetto che è interessato dal routing.
MESSAGGI DI ERRORE

Gli errori rilevati nel corso della verifica topologica vengono visualizzati nell’albero risultati (A pagina: 72), più precisamente nella colonna "Verifica del risultato".
<table>
<thead>
<tr>
<th>Errore</th>
<th>Causa</th>
<th>Soluzione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progetto di partenza sconosciuto!</td>
<td>Il progetto di partenza non è stato trovato.</td>
<td>Correggere la configurazione di progetto, oppure includere nel workspace il progetto mancante.</td>
</tr>
<tr>
<td>Non è stato configurato nessun computer come server primario!</td>
<td>Il progetto è un progetto di rete, ma non è stato configurato nessun server.</td>
<td>Definire un computer che deve fungere da server.</td>
</tr>
<tr>
<td>Il progetto non è stato avviato sul terminale [nome]! Tuttavia è necessario perché livelli di gerarchia maggiori ne richiedono l'accesso!</td>
<td>Il progetto non è caricato sul computer in questione. Il routing per il progetto viene però effettuato mediante questo computer.</td>
<td>Modificare la topologia o il progetto di partenza per il computer oppure disattivare la proprietà Attiva routing.</td>
</tr>
<tr>
<td>Il computer [nome] non è contenuto nella lista computer!</td>
<td>Il computer manca nella lista dei calcolatori per la topologia.</td>
<td>Aggiungere il computer alla topologia.</td>
</tr>
<tr>
<td>Non controllato a causa di un grave errore presente nella topologia</td>
<td>Non è stato possibile effettuare un controllo per questo calcolatore a causa di un altro grave errore.</td>
<td>Eliminare altri errori in modo che sia possibile effettuare il controllo anche di questo calcolatore.</td>
</tr>
</tbody>
</table>
successivo è server o Server-Standby.

- `>` indica che il computer successivo è il server.
- `"+"` indica che il computer successivo è il Server-Standby.

Per esempio: PC 1 + PC 2 > PC 3

<table>
<thead>
<tr>
<th>Esiste un riferimento circolare del server verso il client!</th>
<th>Il server viene trovato sulla base dei nodi nel corso della ricerca del computer client.</th>
<th>Modificare la topologia o il progetto di partenza per il computer oppure disattivare la proprietà Attiva routing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il server [nome] non riesce a raggiungere questo client!</td>
<td>Il percorso del server indicato verso il client non è chiuso. Il client è contenuto nella lista client sul server, ma non viene sincronizzato. (Sul client non spariscono i punti blu)</td>
<td>Modificare la topologia o il progetto di partenza per il computer oppure disattivare la proprietà Attiva routing.</td>
</tr>
</tbody>
</table>

9. **Redundancy**

La ridondanza in zenon garantisce che, anche nel caso in cui il server primario dovesse smettere di funzionare, non ci sia un’interruzione dei processi e una perdita di dati. In zenon si parla in questo caso di **ridondanza senza perdita di dati**.

Ridondanza senza perdita di dati significa che, anche nell’intervallo di tempo che passa fra il momento in cui server primario smette di funzionare e quello in cui il sistema rileva il problema, nessun dato va perso. Tutto questo è possibile nel modo seguente:

1. Il Server-Standby registra in un buffer tutti i dati generati in questo periodo.
2. Il Server-Standby riconosce che il server primario ha smesso di funzionare e ne assume automaticamente la piena funzionalità.
3. Il Server-Standby riporta i dati del buffer nei moduli corrispondenti (AML, CEL, archivi).

Info

Le modifiche al progetto devono essere effettuate solamente sul server primario; il Server-Standby e i client collegati eseguono automaticamente la sincronizzazione online dei dati. Questo garantisce che lo stato del progetto sia lo stesso su tutti i computer della rete.
RIDONDANZA SOFTWARE E HARDWARE

All'interno dei sistemi ridondanti in zenon, si differenzia fra ridondanza software (A pagina: 83) e ridondanza hardware (A pagina: 83).

RIDONDANZA CIRCOLARE

Una particolare forma di ridondanza è rappresentata dalla cosiddetta ridondanza circolare di zenon (A pagina: 108), un meccanismo che consente una semplice configurazione di una ridondanza senza perdita di dati per molti progetti con l’uso di modeste risorse hardware.

RIDONDANZA DI ZENON E RIDONDANZA DI ZENON LOGIC

I dettagli relativi alla combinazione della ridondanza di zenon e della ridondanza di zenon Logic si trovano nella guida dedicata a zenon Logic Runtime.

Info

Se c’è solamente un controller a disposizione che offre solo un canale di comunicazione, si può attivare nelle impostazioni generali della configurazione driver l’opzione Stop al server standby. In questo modo verrà fermato il driver sul Server-Standby e riavviato solamente quando verrà settato come server.

RIDONDANZA CON LO ZENON OPERATOR A SECONDA DEL RUOLO DI QUEST’ULTIMO

Per lo zenon Operator (a seconda del suo ruolo) vale quanto segue in caso di connessioni co un server con licenza Supervisor:

Come Client

- La connessione a Server 1 e Server 2 è possibile.
- Il client si collega al Server-Standby quando il server primario smette di funzionare.
- Vengono supportate più istanze di un driver (perché viene avviato sul server primario e/o sul Server-Standby).
- Tutte le variabili di tutti i driver vengono visualizzate e possono essere scritte.
- È possibile leggere gli archivi.
- Il cambio di ridondanza può essere eseguito.

Come Server-Standby

- La ridondanza con lo zenon Operator (con licenza su Server 1 e Server 2) non viene supportata.
- Se il Runtime viene avviato come Server-Standby con una licenza Operator, si verifica uno stato indefinito.
Come server di dati

- Si può avviare più di un’istanza di un driver. Ma solamente una delle istanze può inviare valori al Runtime. Pertanto lo zenon Operator si comporta in modo analogo ad un pannello CE, su cui, per ragioni tecniche, può essere avviato solamente un driver.

9.1 Tipi di ridondanza

Nei sistemi ridondanti realizzati con zenon si distingue fra:

- **Ridondanza software (A pagina: 83)**
 Il server primario comunica con il PLC in modo bidirezionale, il Server-Standby solo in lettura.

- **Ridondanza hardware (A pagina: 86)**
 Entrambi i server comunicano in modo bidirezionale con il PLC ad essi connesso. Questa tipologia di ridondanza viene utilizzata per lo più in caso di PLC con connessione seriale.

9.1.1 Ridondanza software

Il sistema consiste per lo più di un PLC e due computer ridondanti (server primario e Server-Standby). Entrambi i PC devono essere connessi al PLC.

RIDONDANZA SOFTWARE CON UN PLC

FUNZIONAMENTO

Di regola, entrambi i computer comunicano con il PLC; in questo processo:

- Il server primario comunica in modo bidirezionale (scrittura e lettura) con il PLC.
- Il Server-Standby ha accesso di sola lettura al PLC.
Entrambi i computer mantengono aggiornati e sincronizzano i dati del PLC.

COMPORTAMENTO IN CASO DI MALFUNZIONE DEL SERVER PRIMARIO

Se il server primario smette di funzionare:

- Il Server-Standby diventa il nuovo server primario.
- La ridondanza senza perdita di dati (A pagina: 102) garantisce la completezza dei dati anche durante il tempo che passa fra il momento in cui il server primario smette di funzionare e il passaggio al Server-Standby.
- Il nuovo server primario comunica in modo bidirezionale con il PLC.

RIDONDANZA SOFTWARE CON DUE PLC VIA TCP-IP

È possibile realizzare anche un sistema di ridondanza software anche con due PLC.

Requisiti:

- Il driver deve supportare questa soluzione.
- C’è un file di configurazione che può essere modificato manualmente (usando un Editor di testi).

Procedura di configurazione:
1. Nell’Editor, configurare il driver per la comunicazione con il PLC primario usando l’indirizzo IP di quest’ultimo.

2. Trasferire i file Runtime inizialmente al Server 2.

4. Nelle impostazioni di progetto per il Trasporto remoto, disattivare il trasferimento dei file driver.

 In questo modo si evita che la configurazione sul Server 2 venga sovrascritta dalla configurazione del Server 1.

FUNZIONAMENTO

Funzionamento normale:

- Il server primario comunica in modo bidirezionale con il primo PLC.
- Il Server-Standby comunica per sola lettura con il secondo PLC.
- La completezza dei dati è garantita mediante il meccanismo di sincronizzazione in zenon.

COMPORTAMENTO IN CASO DI MALFUNZIONE DEL SERVER PRIMARIO

Quando il server primario smette di funzionare, il Server-Standby ne assume il ruolo e comincia a comunicare in modo bidirezionale con il PLC secondario.

Quando il server che aveva smesso di funzionare viene riavviato, assume di nuovo il ruolo di server primario, oppure quello di Server Standby, a seconda della modalità di ridondanza (A pagina: 88) configurata.

COMPORTAMENTO SE SMETTE DI FUNZIONARE IL PRIMO PLC

Se smette di funzionare il primo PLC, non viene eseguito automaticamente un cambio di ridondanza.
Perché si verifichi un cambio automatico di ridondanza, è necessario configurare in modo corrispondente la modalità di ridondanza - ponderata (A pagina: 89).

9.1.2 Ridondanza hardware

A differenza della ridondanza software, la ridondanza hardware può essere realizzata solo con due PLC e due PC. Si usa la ridondanza hardware soprattutto quando si utilizzano PLC con connessione seriale.

Funzionamento normale:

- Il server primario comunica in modo bidirezionale con il primo PLC.
- Il Server-Standby comunica in modo bidirezionale con il secondo PLC.
COMPORTAMENTO IN CASO DI MALFUNZIONE DEL SERVER PRIMARIO

Se il server primario smette di funzionare:

- Il Server-Standby diventa il nuovo server primario.
- La ridondanza senza perdita di dati (A pagina: 102) garantisce la completezza dei dati anche durante il tempo che passa fra il momento in cui il server primario smette di funzionare e il passaggio al Server-Standby.

COMPORTAMENTO SE SMETTE DI FUNZIONARE IL PRIMO PLC

Se il PLC connesso al server primario (inizialmente Server 1) smette di funzionare, non viene eseguito automaticamente un cambio di ridondanza.

Perché venga eseguito automaticamente un cambio di ridondanza:

1. Creare 2 variabili:
 a) Una variabile A che viene letta dal PLC del server primario.
 b) Una variabile B che viene letta dal PLC del Server-Standby.
 Attenzione: attivare per la variabile B l’opzione: Richiedere solo da Server standby.

2. Creare due funzioni:
 a) Una funzione di “Cambio ridondanza” (A pagina: 145) per passare al Server 2.
b) Una funzione di “Cambio ridondanza” per passare al Server 1.

3. Creare due matrici di reazione binarie che analizzino lo stato INVALID per rilevare il valore 1.
 a) Collegare alla prima matrice di reazione la funzione di “Cambio ridondanza” che determina il passaggio al Server 2
 b) Collegare alla seconda matrice di reazione la funzione di “Cambio ridondanza” che determina il passaggio al Server 1

Info: informazioni dettagliate sulla creazione e la configurazione delle matrici di reazione si trovano nel capitolo: Matrici di reazione

4. Collegare:
 a) La prima matrice di reazione alla variabile A.
 b) La seconda matrice di reazione alla variabile B.

Se il PLC del server primario smette di funzionare (la variabile A riceve lo stato INVALID), il sistema esegue un cambio di ridondanza e si passa al Server 2.

Se invece smette di funzionare il PLC collegato a quello che era originariamente lo Standby Server (Server 2), il sistema esegue un cambio di ridondanza e si passa al Server 1.

Perché venga eseguito un cambio di ridondanza quando il PLC torna a funzionare e ripristina la connessione:
 1. Estendere le matrici di reazione aggiungendo un altro inserimento che analizzi lo stato INVALID per rilevare il valore 0.
 2. Collegare le funzioni di “Cambio ridondanza” corrispondenti.

9.2 Modalità di ridondanza

Se è stata selezionata ridondanza software (A pagina: 83) come tipo di ridondanza, si hanno a disposizione tre modalità di ridondanza. La distribuzione dei ruoli (server primario o Server Standby) durante il processo e dopo che un server che aveva smesso di funzionare torna ad essere disponibile, dipende dalla modalità di ridondanza impostata.

Esistono tre modalità di ridondanza:
 ▶ Dominante
 ▶ Non dominante
 ▶ Ponderata

FUNZIONAMENTO IN DETTAGLIO:

Dominante
 1. Il server primario smette di funzionare
2. Il server primario originario torna online.
 Così facendo:
 a) si collega al PC che al momento svolge il ruolo di server primario.
 b) Sincronizza tutti i dati.
 c) Riprende a svolgere il ruolo di server primario.

3. Il PC che nell’originale configurazione svolgeva il ruolo di Server-Standby, torna a ricoprire il suo ruolo originario.

4. Tutti i client si connettono al nuovo server primario.

Non dominante

1. Il server primario smette di funzionare
2. Il server primario originario torna online.
 Così facendo:
 a) si collega al PC che al momento svolge il ruolo di server primario.
 b) Sincronizza tutti i dati.
 c) Diventa Server-Standby.

3. Il server primario attuale rimane server primario.

4. Tutti i client mantengono il collegamento con quest’ultimo.

Ponderata

Nel caso della modalità di ridondanza ponderata, i ruoli di server primario e Server-Standby vengono assegnati sulla base di una matrice di analisi.

In questo caso:

1. Entrambi i computer eseguono i propri calcoli di valutazione sulla base dei criteri di analisi configurati.

2. Diventa server primario quel computer per cui l’analisi restituisce un valore maggiore.

3. I ruoli non vengono scambiati se l’analisi restituisce lo stesso valore per entrambi i server.

4. Allarmi e inserimenti CEL vengono scritti dal server primario.

5. I client si collegano al server primario.

9.2.1 Ridondanza in una rete ponderata

Con la ridondanza hardware in una rete ponderata, sono criteri di analisi (A pagina: 91) a decidere quale computer debba svolgere il ruolo di Server primario e quale quello di Server-Standby.
Quest’analisi è liberamente configurabile e può includere criteri diversi. Ad ogni criterio sono assegnati dei punti di analisi (la cosiddetta ponderazione). La somma di questi punti è decisiva nell’assegnazione dei diversi ruoli server.

Info

Se uno dei due server (indipendentemente dal ruolo che sta svolgendo al momento) perde la connessione con l’altro server (per es. a causa di una malfunzione dell’hardware, oppure per problemi della rete), passa automaticamente a svolgere il ruolo di server primario.

CAUSE DI RITARDO DEL CAMBIO DI RUOLO SERVER

Queste cause possono determinare un ritardo nel cambio di ridondanza:

- I moduli interni non sono ancora inizializzati in modo completo. Questo è possibile se un driver ritarda il procedimento di cambio ruolo server.
- Il cambio di ruolo server è già attivo, ma non è ancora completato.
- La sincronizzazione file è ancora attiva.
- È in corso un reload.

Attenzione

Se, in una rete ponderata, l’esito dell’analisi avvia il processo di cambio server, non c’è nessuna garanzia che le funzioni in attesa nella coda del vecchio server primario possano essere portate a termine con successo prima che dell’esecuzione del cambio.

Causa

Questo perché, durante il cambio di ridondanza in una rete ponderata, per poco tempo entrambi i server assumono il ruolo di server primario. In questo lasso di tempo, Server 1 e Server 2 sincronizzano i loro dati. La durata di questo lasso di tempo dipende dal carico della rete e può essere compresa tra 200 e 500 millisecondi.

SINCRONIZZAZIONE TEMPO

Raccomandazione: se è stata configurata una rete ponderata, disattivare sempre la sincronizzazione tempo di Server 1 e Server 2 via rete di zenon.

Procedura:

- Disattivare la sincronizzazione tempo automatica in zenon.
- Attivare su Server 1 e Server 2 la sincronizzazione tempo esterna via sistema operativo.
Ridondanza in una rete ponderata

Per l'impostazione di una rete ponderata devono essere configure le seguenti proprietà del gruppo Rete:

1. L’opzione Rete attiva deve essere attiva.
2. Server 1 e Server 2.
3. Il Tipo di ridondanza deve essere ridondanza software.
4. Tipo di ridondanza deve essere ponderata
5. Analisi della ridondanza nel campo Valutazioni
 I dettagli sull’analisi si trovano nel capitolo "Configurazione dell’analisi della ridondanza (A pagina: 91)".
6. Ritardo di commutazione[s]
7. Banda morta post-commutazione[s]
8. Isteresi (dei punti di analisi)

Configurazione dell’analisi della ridondanza

La finestra di dialogo per configurare l’analisi della ridondanza (“Review ridondanza”) si apre cliccando su "..." nel campo Valutazioni del gruppo delle proprietà Rete.
Nota: Ulteriori informazioni sulle variabili del driver di sistema relative alla rete si trovano nella guida in linea riguardante il driver di sistema, nel capitolo Tema - Rete.

VARIABILI PER ANALISI

Particolarmente adatte per l’analisi sono:

- Variabili di processo: per rilevare perdite di collegamento con un PLC.
- Variabili locali: per informazioni sulle risorse del PC. Ad esempio, con le variabili del driver di sistema del tema [risorse HW] (sysdrv.chm::/25958.htm).
Variabili interne per la cui proprietà **Funzionamento** è stata configurata l’opzione **locale**.

Attenzione: Le analisi basate su variabili del driver matematico o variabili i cui driver sono stati fermati sul server Standby hanno effetto sempre solo sull’attuale server primario del processo.

Le variabili matematiche e le variabili di processo i cui driver vengono fermati sul server Standby non aggiornano mai l’analisi sul server Standby. Per queste variabili, la ponderazione calcolata nella valutazione mantiene l’ultimo valore dal momento in cui questo server funzionava ancora come server principale del processo.

FINESTRA DI DIALOGO “REVIEW RIDONDANZA”

I campi di questa finestra di dialogo possono essere filtrati ed ordinati.
Opzione

<table>
<thead>
<tr>
<th>Nome della variabile</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lista delle variabili usate per l’analisi.</td>
<td></td>
</tr>
<tr>
<td>Nota: possono essere usate al massimo 200 variabili per l’analisi della ridondanza.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carico</th>
<th>Valore del criterio di controllo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indica il valore del singolo criterio di controllo nel complesso di tutti i risultati di controllo.</td>
<td></td>
</tr>
<tr>
<td>Viene sommato il peso (valore di analisi) di tutte le variabili che corrispondono ai criteri di analisi (si veda la descrizione dell’opzione Comparazione).</td>
<td></td>
</tr>
<tr>
<td>Intervalllo di input: 0 - 1000</td>
<td></td>
</tr>
<tr>
<td>Default: 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparazione</th>
<th>Indica il tipo di comparazione al verificarsi del quale il valore del peso viene preso in considerazione per l’analisi complessiva.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menù a tendina:</td>
<td></td>
</tr>
<tr>
<td>▶ Non utilizzato</td>
<td></td>
</tr>
<tr>
<td>Non viene eseguita nessuna comparazione per il peso.</td>
<td></td>
</tr>
<tr>
<td>▶ Solo stato OK /Valore OK</td>
<td></td>
</tr>
<tr>
<td>Il sistema controlla se c’è un valore valido. Non appena viene rilevato un valore senza stato INVALID, il valore di ponderazione è utilizzato per l’analisi complessiva.</td>
<td></td>
</tr>
<tr>
<td>Nota: permette di verificare se la connessione al PLC è stabilita - tramite qualsiasi variabile fornita dal PLC.</td>
<td></td>
</tr>
<tr>
<td>▶ Valori superiori al limite sono OK</td>
<td></td>
</tr>
<tr>
<td>I valori superiori o uguali al limite indicato usano il valore del carico nella valutazione complessiva.</td>
<td></td>
</tr>
<tr>
<td>▶ Valori inferiori al limite sono OK</td>
<td></td>
</tr>
<tr>
<td>I valori minori o uguali al limite indicato usano il valore del carico nella valutazione complessiva</td>
<td></td>
</tr>
<tr>
<td>Default: non utilizzato</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valore limite</th>
<th>Limite per la comparazione nel caso siano state selezionate le opzioni "Valori superiori al limite sono OK" oppure "Valori inferiori al limite sono OK"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default: 0</td>
<td></td>
</tr>
<tr>
<td>Nota: se l’opzione selezionata per la comparazione è "non utilizzato" oppure "Solo stato OK /Valore OK", gli inserimenti di questo campo non hanno alcuna influenza sulla</td>
<td></td>
</tr>
</tbody>
</table>
Una variabile viene configurata nella finestra "Review ridondanza" con le seguenti impostazioni:

- **Carico:** 50
- **Comparazione:** Valori superiori al limite sono OK
- **Valore limite:** 50

SETTARE IL VALORE DELLA VARIABILE SU 55. LA CONDIZIONE DIVENTA VERDA E IL CARICO DI 50 VIENE SOMMATO AL RISULTATO DELLA VARIABILE DEL DRIVER DI SISTEMA [RETE] **RISULTATO VALUTAZIONE Server 1**.

Un’altra variabile viene configurata con le seguenti impostazioni:

- **Carico:** 30
- **Comparazione:** Valori inferiori al limite sono OK
- **Valore limite:** 10

_FINCHÉ IL VALORE DI QUESTA SECONDA VARIABILE È = < 10, IL CARICO VIENE AGGIUNTO ALLA VARIABILE DEL DRIVER DI SISTEMA. SE IL VALORE DELLA SECONDA VARIABILE È, PER ESEMPIO, 5, IL VALORE DELLA VARIABILE [RETE] **RISULTATO VALUTAZIONE Server 1** SARÀ 80. CIÒ VALE ANCHE SE LA VARIABILE DESCRITTA PRECEDENTEMENTE È VER'.$
Ritardo di commutazione, banda morta e isteresi

RITARDO DI COMMUTAZIONE

Il Ritardo di commutazione[s] è quel lasso di tempo (tempo di tolleranza) nel corso del quale le modifiche di valore nei risultati dell’analisi non provocano un cambio nei ruoli server. Così, piccoli problemi passeggeri, come per es. una breve interruzione di funzionamento, non provocano un immediato cambio del server.

Nota: un ulteriore miglioramento del risultato di analisi durante il ritardo di commutazione configurato, non resetta il timer.

Esempio

Se si configura un Ritardo di commutazione[s] di 30 secondi, per almeno 30 secondi l’analisi sull’attuale Server-Standby deve dare un risultato migliore di quello del server primario perché ci sia un cambio nella gerarchia dei server.

Dopo un cambio nella gerarchia server, i timer di Banda morta post-commutazione[s] e Ritardo di commutazione[s] possono procedere parallelamente; devono cioè essere entrambi scaduti per provocare un cambiamento di ruoli server.

BANDA MORTA POST-COMMUTAZIONE

Questa impostazione impedisce un reset provocato dall’analisi del server primario durante il tempo configurato.

Nota: la funzione Cambio ridondanza può essere eseguita.

Esempio

Se l’analisi del Server-Standby attuale - dopo l’ultimo cambio avvenuto nell’ambito della banda morta configurata - restituisce un risultato superiore a quello dell’attuale server, non si verifica un nuovo cambio di ruoli finché non sarà scaduto questo lasso di tempo. Il "tempo di misurazione" inizia nel momento in cui è eseguito il cambio di ruoli fra i server.

Se il risultato dell’analisi aumenta nel corso della banda morta dello Standby, diventando maggiore a quello del server, per poi però diminuire prima dello scadere di questo lasso di tempo a valori inferiori o uguali a quelli del server, non avviene alcun cambio di ruoli server.
ISTRESI (IN PUNTI DI ANALISI)

Se è stata configurata un’isteresi, prima di un cambio di ridondanza il sistema verifica se il valore assoluto della differenza delle analisi dei due calcolatori (Server 1 e Server 2) è maggiore o uguale al valore impostato nell’isteresi. Il cambio viene inizializzato nel momento in cui viene raggiunto il valore impostato.

Esempio

Server 1 è server primario.

Il risultato dell’analisi di Server 1 e Server 2 è 0.

L’isteresi è stata configurata con un valore pari a 100.

Se cambia l’esito dell’analisi di Server 2 a 99 non accade nulla; ma se il valore raggiunge 100, il sistema esegue un cambio di ruoli server.

Ritardo di commutazione - Esempio

In questo esempio, il cambio dei due server viene provocato da un risultato superiore dell’analisi di Server 2.

- Quando la causa che provoca il cambio si è verificata, deve passare il tempo impostato come tempo di ritardo.
 Poi il Server 2 diventa server primario.
▸ Anche quando il Server 1 potrebbe assumere nuovamente il ruolo di server primario, deve trascorrere il tempo di ritardo di commutazione impostato prima che il Server 1 torni ad essere il server primario.

▸ Server 2 assume il ruolo di server primario solo dopo che la differenza fra le variabili di analisi del sistema è diventata maggiore all’isteresi del ritardo di commutazione. Dopo il cambio di ruoli server, viene attivato il conteggio della Banda morta post-commutazione[s] configurata.

▸ Server 2 assume il ruolo di Server-Standby nel momento in cui la differenza ritorna ad essere maggiore all’isteresi, dopo che è trascorso il tempo del ritardo di commutazione.

Nota: il cambio di ruoli dei due server viene visualizzato nel grafico tramite la linea tratteggiata verticale.

Esempio: Configurazione in caso di ridondanza software con due PLC

CONFIGURAZIONE NELL’EDITOR.

Per ottenere un cambio di ridondanza automatico causato dai risultati dell’analisi dopo che un PLC ha smesso di funzionare:

1. Creare una configurazione come descritto nel capitolo Ridondanza software (A pagina: 83) - “Ridondanza software con due PLC via TCP-IP”.

2. Creare una variabile del driver corrispondente.

 ![Review ridondanza](image)

4. Per l’opzione **Comparazione** impostare **Solo stato OK / Valore OK** con un carico corrispondente.

COMPORTAMENTO A RUNTIME

1. Se a Runtime smette di funzionare il PLC del server primario, oppure se la connessione con il PLC viene interrotta, la variabile riceve lo stato **INVALID** e il risultato dell’analisi diminuisce di un valore corrispondente a quello configurato.

2. Al momento in cui il PLC smette di funzionare, sul Server Standby viene visualizzato lo stato **INVALID** della variabile, ma per l’analisi continua ad essere utilizzato internamente il valore preso dal buffer Standby. Questo valore ha uno stato valido perché il Server Standby legge i valori dal secondo PLC.

3. Una volta trascorso il **ritardo di commutazione** (A pagina: 95) impostato, il Server-Standby assume il ruolo di server primario e inserisce i valori validi presi dal buffer Standby.

Info

Per l’analisi rilevante per la ridondanza viene preso in considerazione lo stato dei valori presi dal buffer del Server-Standby. Si tratta di un’eccezione, perché per altre analisi viene preso in considerazione sempre lo stato del server primario.
I seguenti inserimenti LOG vengono scritti nel Diagnosis Viewer per la rete ponderata:
Inserimento nei file di LOG.

<table>
<thead>
<tr>
<th>Debug Level</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug</td>
<td>Dati della classe CD_CSystemDaten vengono trasportati via connessione 0 (watchdog) al computer csbg079. Il modulo indica il modulo di zenon che riceve i dati. Modulo 10: Modulo di rete Esecuzione sincrona</td>
</tr>
</tbody>
</table>

LOG SendData Project: RATED_NET
To: CDSBG079.COPA-DATA.INTERNAL
Modul: 10 Prior: 0
Class: CD_CSystemDaten

LOG SendData Project: RATED_NET
To: W7X64 Modul: 10 Prior: 0
Class: CD_CSrv1SystemDaten

LOG ReceiveData Project: RATED_NET
To: S Modul: 10
Class: CD_CSrv2SystemDaten

Descrizione della funzione per la quale viene creato il messaggio. Per esempio: Server received system data.; Client send watchdog; ecc.

ClientRechner: sorgente o destinazione a seconda della direzione
CommandTxt: comando come testo normale. Ad esempio: Server_REQ_DateiListe
CommandNum: identificazione numerica del comando.
- 0 = Server_REQ_LifeMsg,
- 1 = Server_REQ_DateiListe,
- 2 = Server_REQ_GetDatei,
- 3 = Client_REQ_UpdateProjekt,
- 4 = Server_REQ_RedundanzUmschaltung,
- 5 = NETSRV_ConnectionClosed,
- Timeout: Timeout in ms
- ReqId: Request Id
- Reload: 1 se il server è in reload, altrimenti 0

SubCommand: Numero del sotto-comando
Significato dipendente da CommandNum
Per Command 0 ServerReqLifeMsg:
- 1 = STAT_CLIENT_ABGEWIESEN,
- 2 = STAT_CLIENT_ANGENOMMEN,
- 3 = STAT_CLIENT_SERVERCLOSE
Redundancy

- 4 = STAT_CLIENT_SERVERSWITCH
- 5 = STAT_CLIENT_SB_ANGENOMMEN
- 6 = STAT_SB_SERVER_TO_SB
- 7 = STAT_PEER_ALIVE

Per comando 4 cambio della ridondanza:
- 0 = IdleChangeOfDominance
- 1 = AdviseChangeOfDominance
- 2 = ConfirmChangeOfDominance

Stat2: Comando addizionale - informazione specifica. Per esempio: Nel caso del comando Server_Req_LifeMsg, subcommand:: STAT_CLIENT_ANGENOMMEN, risposta per la registrazione di un client sul server è il numero di versione progetto in HiWORD.

AddText: Testo addizionale.

ItemCnt: Numero degli oggetti della lista.
9.3 Configurazione della ridondanza senza perdita di dati

Per configurare la ridondanza senza perdita di dati per un progetto di zenon servono due calcolatori.
Definire nelle proprietà di progetto:

1. Il computer che deve svolgere il ruolo di Server primario (A pagina: 26) per il progetto
2. Il computer che deve svolgere il ruolo di Server-Standby (A pagina: 104) per il progetto

FUNZIONAMENTO DELLA RIDONDANZA SENZA INTERRUZIONI

Procedura per realizzare una ridondanza senza perdita di dati:

- Un computer è il server primario e l’altro il Server-Standby del progetto.
- Come in un normale modello client/server, il server primario ha il controllo di tutti i dati.
- Il Server-Standby si comporta verso l’esterno (nei confronti dell’utente) come ogni altro computer della rete nel quale è eseguito il progetto in questione.
- Il Server-Standby salva autonomamente tutti i dati storici, come allarmi, eventi e archivi e sincronizza altri dati (ricette, utenti ecc.) con il server primario.
- Se il server primario smette di funzionare per qualsiasi ragione, il Server Server-Standby passa al ruolo di server e ne assume tutti i compiti.

Per evitare che vadano persi dei dati nell’intervallo di tempo intercorrente fra il verificarsi del problema di funzionamento del server primario e il rilevamento del problema stesso, il Server-Standby bufferizza sempre tutti i dati generati.

Dopo che il server primario ha smesso di funzionare, si ricorre a questo buffer, il che permette di evitare che si perdano dati.
Tutti i client si connettono al nuovo server primario.

Quando il server primario originario torna online, il sistema si comporta diversamente a seconda del tipo di modalità di ridondanza che è stata configurata.

Ulteriori informazioni su questo tema si trovano nella parte della guida dedicata alle Modalità della ridondanza (A pagina: 88).

Info

Le modifiche al progetto devono essere effettuate solamente sul server primario; il Server-Standby e i client collegati eseguono automaticamente la sincronizzazione online dei dati. Questo garantisce che lo stato del progetto sia lo stesso su tutti i computer della rete.

RIDONDANZA DI ZENON E RIDONDANZA DI ZENON LOGIC

I dettagli relativi alla combinazione della ridondanza di zenon e della ridondanza di zenon Logic si trovano nella guida dedicata a zenon Logic Runtime.

9.4 Impostare il Server Standby

Per impostare il Server Standby:

1. Nell'Editor di zenon, passare al gruppo **Rete** delle proprietà di progetto.
2. Inserire nella proprietà **Server 2** il nome del computer che deve fungere da Server-Standby nell’ambito del progetto.
 Nota: il computer deve avere una connessione con il PLC.
 Si può inserire il nome del computer:
 a) Selezionandolo nel menù a tendina che si apre cliccando sul pulsante ...
 Si apre la finestra di dialogo **Select the desired computer** che contiene tutti i computer disponibili in rete.
 Nota: questo processo può durare molto tempo, a seconda del numero di computer disponibili in rete.
 b) Digitando il nome del server nel relativo campo di inserimento.
3. Selezionare nella proprietà **Tipo di ridondanza** il tipo di ridondanza (A pagina: 83) desiderato scegliendola fra quelli proposti dal menù a tendina.

Info

Sono consentiti server di differenti domini!
In questo caso, configurare il nome server includendo il nome del dominio.
Per esempio: terminal_01.mydomain.net
Dimensione del buffer Standby

La dimensione del buffer di Standby dipende dalla configurazione. Quattro terzi del tempo di timeout di rete configurato sono sempre bufferizzati.

La configurazione di questo tempo di timeout di rete è eseguita nel file zenon6.ini, nell’area [Netz], con l’inserimento NET_TIMEOUT_MSEC=. Tutti i dati vengono memorizzati nel buffer sul server di Standby.

Inoltre, questo inserimento del file INI determina il periodo di tempo che il server Standby attende prima di passare a svolgere il ruolo di server primario del processo.

9.5 Configurazioni particolari della comunicazione fra server primario e Server-Standby

Tenere presenti queste regole nella seguente situazione:

- Il server primario ha smesso di funzionare
- Il Server-Standby ne ha assunto il ruolo
- Il server primario originario viene riavviato
- Il server primario originario va a prendersi i dati Runtime dal server primario attuale (quello che originariamente svolgeva il ruolo di Server-Standby).

In casi eccezionali si possono verificare dei conflitti, se:

1. Sono state effettuate delle modifiche solamente al progetto del server primario originario che si è bloccato
2. A causa di problemi insorti in rete, non è chiaro quale calcolatore è il server primario

1. MODIFICHE DI PROGETTO EFFETTUATE CON IL SERVER PRIMARIO BLOCCATO

Se si effettuano delle modifiche ad un progetto nel periodo di tempo nel quale il Runtime è bloccato sul server primario originario, e se le si carica prima della sincronizzazione solamente su questo calcolatore (bloccato), questi cambiamenti saranno sovrascritti non appena il server primario originario andrà a prendersi i dati dal server primario attuale (quello che originariamente svolgeva il ruolo di Server-Standby).

Per evitare questo: prima di riavviare il server primario originario (quello definito come tale in fase di configurazione della rete), caricare i dati modificati anche sul server primario attuale (quello che originariamente svolgeva il ruolo di Server-Standby).

2. MODIFICHE DI PROGETTO IN MODALITÀ DI RIDONDANZA E/O NEI SERVER UTILIZZATI

Le seguenti modifiche vengono accettate solamente dopo il riavvio del server primario:

- Modifica del Tipo di ridondanza.
Modifica delle proprietà Server 1 e/o Server 2 nel gruppo Rete delle proprietà di progetto.

⚠️ Attenzione

In questo caso non è sufficiente effettuare un reload del progetto nel Runtime perché i cambi necessari siano applicati! Per accettare tutte le modifiche, riavviate il server primario.

3. NON È CHIARO CHI SVOLGE IL RUOLO DI SERVER A CAUSA DI PROBLEMI DI FUNZIONAMENTO DELLA RETE

In casi eccezionali può succedere che entrambi i calcolatori siano server primari. Una causa può essere, per esempio, la perdita della connessione di rete per mancato switch, cavi disconnessi ecc. In questo caso la comunicazione fra server primario, Server-Standby e client è falsata.

Se questo problema viene risolto e i due calcolatori (che sono in un certo momento contemporaneamente server primari) riprendono a comunicare l’uno con l’altro, quello configurato originariamente come server primario riassume il rango primario nella gestione dei dati. Questo significa: i dati più attuali del Server-Standby potrebbero essere sovrascritti.

Per evitare questo:

2. Chiudere il Runtime di zenon sul server primario che ha perso la connessione di rete.
3. Ripristinare poi la connessione di rete.
4. Riavviare il Runtime di zenon su questo computer.
5. Il Runtime avvia poi il progetto con il computer come Server-Standby, aggiorna i propri dati e solo dopo torna a svolgere il ruolo originario di server primario.

Suggerimento: monitorare la connessione di rete con il Redundancy Management Tool (A pagina: 109).
9.6 Methode di analisi integrato per cambio di ridondanza

Nella rete dominante, il computer configurato come Server 2 invia regolarmente un telegramma al Server 1 (dominante), in modo tale che quest’ultimo (non appena dispone di una connessione), possa riassumere il proprio ruolo. In una rete ponderata, invece, non viene più inviato nessun telegramma in questo caso.

Se ci sono due server, è la valutazione a decidere il ruolo.

USO DEL COMPORTAMENTO DOMINANTE IN ZENON LOGIC

- Un driver può ritardare il passaggio al ruolo di server sul server dominante. Questa funzione non esiste più in una rete ponderata con server che hanno eguali diritti.
- Gli archivi ricevono un byte extra per inserimento sia sul Server-Standby, che sul Server 2. Questo garantisce che gli archivi siano differenti e siano coinvolti nel processo di sincronizzazione.
- Inoltre, la topologia di rete per i driver continua ad usare i termini dominante e Standby, nonché i ruoli di server o Standby. Tuttavia, viene valutato solamente il ruolo, perciò non è necessaria nessuna modifica.
- A zenon Logic vengono fornite informazioni su definizione e ruolo tramite CStratonVM::UpdatePrjSTates. L’unica cosa ad essere analizzata è se un calcolatore è stato configurato come Server-Standby e non come server primario. In questo caso, zenon Logic non è attivo.
9.7 La ridondanza circolare di zenon

La ridondanza circolare di zenon consente di realizzare un meccanismo di ridondanza senza perdita di dati, che coinvolge diversi progetti; questo meccanismo ha l’ulteriore vantaggio di non richiedere un grande utilizzo di risorse hardware.

Per ogni progetto ridondante si ha bisogno normalmente di 2 computer: uno che funge da server primario e uno che svolge il ruolo di Server-Standby. 3 progetti, dunque, richiederebbero 6 PC. Con la ridondanza circolare di zenon bastano 3 computer per gestire in modo ridondante tre progetti. Per ogni ulteriore progetto si ha bisogno di un altro computer. zenon unisce i vantaggi della gestione multi-progetto (A pagina: 32) a quelli della ridondanza senza perdita di dati (A pagina: 81).

CONCETTO DELLA RIDONDANZA CIRCOLARE

La ridondanza circolare utilizza le possibilità dalla gestione multiprogetto. Più progetti possono essere attivi contemporaneamente su un computer. Ogni computer è server primario per un progetto e Server-Standby per un secondo "progetto vicino", e può essere client per altri progetti. Ne risulta una struttura circolare. Invece che, per esempio, di 4 computer e licenze per 2 progetti, di 6 per 3 o di 8 per 4, si ha bisogno della metà delle risorse.

Topologia con 3 progetti

- Il computer 1 è server primario per il progetto A e Standby Server per il progetto B.
- Il computer 2 è server primario per il progetto B e Standby Server per il progetto C.
- Il computer 3 è server primario per il progetto C e Standby Server per il progetto A.
- Il cerchio si chiude.
- Ogni computer può fungere allo stesso tempo da client per gli altri progetti.
Risorse necessarie: 3 PC e 3 licenze Runtime

Info

Si ha bisogno di un progetto di integrazione (A pagina: 37) per avviare un progetto su più di un computer.

Normalmente si avrebbe bisogno di ben 6 PC e 6 licenze Runtime per realizzare un sistema come quello dell’esempio. La ridondanza circolare di zenon, ovviamente, non è limitata a tre progetti; la si può usare per connettere in circolo quanti progetti si vuole. Siccome i computer possono essere anche i client di altri progetti, è semplice realizzare una linea di produzione sicura, a basso costo, e il cui potenziale può essere sfruttato al massimo.

SINCRONIZZAZIONE TEMPO CON LA RIDONDANZA CIRCOLARE DI ZENON

Se la Sincronizzazione tempo (A pagina: 19) di zenon è attiva, il Server-Standby e i client ricevono il tempo attuale sempre dal server primario. Questo non ha senso se si usa la ridondanza circolare di zenon, perché i singoli PC sono contemporaneamente server prioritari e Server-Standby (per diversi progetti). In questo caso, per esempio, il computer 1 riceverebbe il tempo dal 2, il 2 dal 3 e così via.

Raccomandazione: in questo caso, si consiglia di disattivare il meccanismo di sincronizzazione tempo di zenon e di attivare una sincronizzazione esterna. La procedura da seguire in questo caso è illustrata nel capitolo Sincronizzazione tempo in rete (A pagina: 19).

9.8 Redundancy Management Tool

Il Redundancy Management Tool monitora l’adattatore di rete e la sua connessione alla rete. Se il dispositivo non è più connesso alla rete (per es. perché viene staccato il cavo di rete), il Redundancy Management Tool ferma il Runtime. L’utente può interrompere questo processo entro un intervallo di tempo configurabile. Se la connessione alla rete viene ristabilita, il Redundancy Management Tool riavvia il Runtime.

START E CONFIGURAZIONE

Il Redundancy Management Tool può essere configurato tramite apposito dialogo o mediante riga di comando.

Per aprire questa finestra di dialogo:

- Usandola cartella di avvio di Windows:
 Start -> Tutti i programmi -> COPA-DATA -> Tools 8.00 -> Redundancy Management Tool

- Usando lo Startup Tool:
 Tools -> Redundancy Management Tool
Lanciare direttamente il file `zenon_redman.exe` della cartella di programma di zenon.

Dopo che è stato avviato il **Redundancy Management Tool**, il simbolo corrispondente appare nella parte destra della barra delle applicazioni di Windows. Cliccando due volte sul simbolo, si apre la finestra di dialogo per la configurazione del tool.

STATO

Informazioni relative allo stato dell'adattatore di rete.
Redundancy

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Adapter Connection State</td>
<td>Informazione sullo stato:</td>
</tr>
<tr>
<td></td>
<td>▶ Connected: Esiste una connessione alla rete.</td>
</tr>
<tr>
<td></td>
<td>▶ Disconnected: La connessione alla rete è stata interrotta.</td>
</tr>
<tr>
<td>Runtime State</td>
<td>Stato del Runtime di zenon.</td>
</tr>
<tr>
<td></td>
<td>▶ Running: il Runtime è attivo.</td>
</tr>
<tr>
<td></td>
<td>▶ Stopped by Redundancy Management Tool: Il Runtime è stato chiuso dal tool.</td>
</tr>
<tr>
<td></td>
<td>▶ Stopped: il Runtime non è attivo.</td>
</tr>
</tbody>
</table>

SETTINGS

Configurazione dell’adattatore di rete da monitorare.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring Network Adapter</td>
<td>Selezionare l’adattatore di rete da monitorare fra quelli del menù a tendina. La lista visualizza tutti gli adattatori di rete disponibili sul computer.</td>
</tr>
<tr>
<td>Runtime Shutdown Delay</td>
<td>Impostazione del tempo di ritardo in secondi prima della chiusura del Runtime. In questo intervallo di tempo l’operatore può cancellare il processo di chiusura del Runtime.</td>
</tr>
<tr>
<td></td>
<td>Default: 10 s</td>
</tr>
<tr>
<td></td>
<td>Valore massimo: 2147483647 s</td>
</tr>
<tr>
<td></td>
<td>I valori maggiori vengono interpretati come 0.</td>
</tr>
<tr>
<td>OK</td>
<td>Applica le impostazioni e chiude la finestra di dialogo.</td>
</tr>
<tr>
<td></td>
<td>Le impostazioni vengono riprese nel file INI.</td>
</tr>
</tbody>
</table>

FILE INI

Se si sceglie di configurare usando la finestra di dialogo, nel percorso %ProgramData%\COPA-DATA\System viene creato il file RedMan.ini. Questo file contiene i seguenti inserimenti:
Redundancy Management Tool può essere avviato anche mediante la riga di comando.

Possibili parametri:

- **ADAPTER= [Nome]**
 Definisce l’adattatore di rete da monitorare.

- **DELAY= [secondi]**
 Indica il tempo di attesa dopo un’interruzione della connessione.
 Valore massimo: 2147483647. I valori maggiori vengono interpretati come 0.

- **HELP,?**
 Visualizza l’help relativo ai parametri della riga comandi.

Info

Nel caso di una configurazione mediante la riga di comando:

- Queste impostazioni sono applicate direttamente.
- La configurazione è disattivata nella finestra di dialogo.

Non viene scritto nessun file INI.
A RUNTIME

A Runtime, il **Redundancy Management Tool** monitora continuamente la connessione di rete. Se la connessione si interrompe, il **Redundancy Management Tool** visualizza un avvertimento. Il Runtime viene chiuso allo scadere del tempo configurato come tempo di ritardo.

Non appena la connessione viene ripristinata, il **Redundancy Management Tool** riavvia il Runtime. Cliccando sul pulsante **Cancel**, si interrompe il conto alla rovescia e si impedisce che il Runtime venga chiuso. Dopo il ripristino della connessione, la finestra di dialogo verrà visualizzata di nuovo quando si verificherà un’altra interruzione. L’utente può decidere di interrompere il processo di chiusura del Runtime, oppure di consentire che il tool chiuda il Runtime.

Info

Lo stato attuale della connessione e del Runtime viene sempre visualizzato anche nel dialogo di configurazione.

TRATTAMENTO ERRORI

MESSAGGI DI ERRORE

Gli errori vengono visualizzati con dei messaggi pop-up.
Redundancy

Messaggio

| GetAdapterAddresses not supported on this platform! Error code '%u'! | La versione del sistema operativo non viene supportata. |
| GetAdapterAddresses did not return information about network adapters. Error code '%u'! | Nessun adattatore di rete trovato. |

FILE LOG DEL DIAGNOSIS VIEWER

Nei file LOG del Diagnosis Viewer sono documentati:

<table>
<thead>
<tr>
<th>Inserimento</th>
<th>Debug Level</th>
<th>Significato</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network link '%s' down for '%u' seconds. zenon Runtime will be terminated.</td>
<td>Errore</td>
<td>Connessione non riuscita: il Runtime viene chiuso.</td>
</tr>
<tr>
<td>Network link '%s' is up. Restarting zenon Runtime now.</td>
<td>Informazioni</td>
<td>La connessione di rete è di nuovo disponibile: il Runtime viene riavviato.</td>
</tr>
</tbody>
</table>
10. COPA-DATA PRP

zenon supporta il Parallel Redundancy Protokoll (PRP) per la comunicazione hardware ridondante in una rete Ethernet. Questo protocollo è standardizzato nella norma IEC 62439-3.

La comunicazione PRP avviene direttamente a livello OSI Layer 2, indipendentemente dall'Editor di zenon e dal Runtime di zenon. Non è necessario effettuare configurazioni speciali in zenon. Per usare questo protocollo, il computer deve avere due schede di rete ed essere configurato in modo corrispondente.

Per poter usare PRP, si ha bisogno di:

- **Servizio di rete COPA-DATA PRP driver**
- **PRP Configuration and Diagnostics Tool**

Lo trovate sul supporto di installazione. Una descrizione dettagliata dei passaggi di configurazione necessari si trova nel capitolo Installazione e configurazione (A pagina: 116) di questo manuale.

Nota: Il confronto pacchetti del servizio di rete supporta reti fino a 100 Mbit.

10.1 Requisiti di sistema

La comunicazione PRP è supportata per 100-Mbit/s-Ethernet nei seguenti sistemi operativi:

- Windows 7
Windows 8
Windows 10, a partire dalla versione 1607
Attenzione: le versioni precedenti di Windows 10 non sono supportate.

10.2 Requisiti hardware

Per la comunicazione PRP valgono i seguenti requisiti hardware:

- Entrambe le schede di rete utilizzate devono supportare Jumboframes.
- Una configurazione dell’indirizzo MAC amministrato localmente è possibile per entrambe le schede di rete.

⚠️ Attenzione

La comunicazione PRP è supportata solamente in una rete ridondante. Via PRP possono essere connesse due reti fisiche.

Un’ulteriore connessione in un’altra rete PRP, però, non è supportata.

10.3 Installazione e configurazione

Per preparare il computer all’installazione di PRP:

1. Spegnere il computer e scollegarlo dall’alimentazione di corrente (reset fisico).
2. Riavviare il computer.

Poi eseguire i seguenti passi di configurazione nel sistema operativo:

1. Configurare i due adattatori di rete a disposizione.
2. Creare un bridge di rete (= Bridge) utilizzando gli adattatori.
3. Installare il COPA-DATA PRP driver per il bridge di rete.
4. Configurare la connessione PRP.

Una descrizione dettagliata dei passaggi di configurazione si trova nei capitoli seguenti.

NOTE

Tenere presente quanto segue:

- Per eseguire l’installazione bisogna avere i diritti di amministratore sul computer.
- Il sistema deve essere riavviato per completare l’installazione.
- Seguire le istruzioni per i singoli passaggi.
- Il confronto pacchetti del servizio di rete supporta reti fino a 100 Mbit.
- Un update dei file PRP può essere eseguito solamente con una versione principale di zenon, oppure con un Service Pack. Versioni Build non consentono di eseguire quest’operazione.

> **Attenzione**

Fare attenzione ad eseguire i passaggi della configurazione nella successione indicata.

10.3.1 Installazione e configurazione

Nel primo passaggio, modificare la configurazione del sistema operativo per entrambi gli adattatori di rete. La finestra di dialogo di configurazione e la denominazione delle proprietà estese dipendono dalla scheda di rete usata.

ADATTATORE DI RETE 1

Nel sistema operativo, configurare il primo adattatore di rete.

1. Aprire le proprietà di sistema **Modifica impostazioni scheda**. Queste impostazioni si trovano in Pannello di controllo => Rete e Internet => Centro connessioni di rete e condivisione
2. Selezionare l’adattatore di rete desiderato.

3. Con il tasto destro del mouse selezionare nel menù contestuale l’inserimento Proprietà. Si apre la finestra di dialogo di configurazione delle proprietà dell’adattatore di rete.

4. Cliccare sul pulsante Configura...
 Si apre la finestra delle proprietà dell’adattatore di rete.

5. Passare alla scheda Avanzate.

 Nota: il nome di questo inserimento può essere diverso a seconda della scheda di rete.
7. Selezionare un valore nel menù a tendina Value.
Scegliere il valore più piccolo fra quelli disponibili che sia maggiore di 1530 Byte.
Attenzione: l’impostazione disabilitato non deve essere selezionata.

8. Nella scheda Avanzate selezionare l'impostazione Locally-administered address.

Esempi:
- 0A:80:41:ae:fd:7e
- 0A-80-41-ae-fd-7e
- 0A8041aefd7e

10. Assicurarsi che entrambe le connessioni usino lo stesso indirizzo MAC.
Modificare questo indirizzo nel campo di inserimento Value:
- L'indirizzo MAC deve cominciare con 0A!
- L'indirizzo MAC nella rete locale deve essere univoco.

11. Terminare la configurazione della scheda di rete cliccando sul pulsante OK

ADATTATORE DI RETE 2

Ripetere i passaggi per il secondo adattatore di rete.
Fare attenzione ad inserire lo stesso indirizzo MAC indicato nella configurazione precedente.

⚠️ Attenzione

Assicurarsi che:
- L'indirizzo MAC usato sia lo stesso per entrambi gli adattatori di rete.
- Non sia utilizzato da un altro computer in rete.

10.3.2 Installazione e configurazione

In questo passaggio, si combinano i due adattatori di rete con un bridge di rete. A questo scopo, adattare la configurazione di entrambi gli adattatori di rete usati.

Creare un bridge di rete nelle impostazioni di sistema.

1. Aprire le proprietà di sistema Modifica impostazioni scheda.
 Queste impostazioni si trovano in Pannello di controllo => Rete e Internet => Centro connessioni di rete e condivisione
2. Selezionare i due adattatori di rete che si vuole usare per la comunicazione PRP.
 Nota: le configurazioni necessarie sono già state realizzate per entrambi gli adattatori di rete. Una modifica della configurazione di un adattatore di rete diventa effettiva solo dopo che si è creato un nuovo bridge.
 Attenzione: entrambi gli adattatori di rete devono essere stati configurati con lo stesso indirizzo MAC!

3. Con il tasto destro del mouse, selezionare il comando *Connessioni con bridging.*
 Verrà realizzato un bridge di rete per l’adattatore selezionato. Questo processo viene visualizzato per mezzo di una apposita finestra di dialogo.

4. Il bridge creato viene visualizzato nel Pannello di controllo.
 Attenzione: il bridge deve contenere solamente due adattatori.

10.3.3 Installazione e configurazione

In questo passaggio, si installa il servizio di sistema necessario per la comunicazione PRP.

Installare il COPA–DATA PRP driver
1. Selezionare il bridge appena creato (Bridge).
2. Con il tasto destro del mouse, selezionare nel menù contestuale l’inserimento Proprietà.
 Si apre la finestra di dialogo di configurazione delle proprietà del bridge.

 ![Proprietà - Network Bridge](image1)

 3. Cliccare sul pulsante **Install...**
 Si apre la finestra di dialogo per installare un tipo di funzionalità di rete.

 ![Selezionare tipo di funzionalità di rete](image2)
4. Selezionare **Servizio** come funzionalità di rete da installare.

5. Cliccare sul pulsante **Aggiungi...**
 Si apre la finestra di dialogo per la selezione del servizio di rete.

![Selezione servizio di rete](image1)

6. Cliccare sul pulsante **Supporto dati...**
 Si apre la finestra di dialogo per la selezione del luogo dove è salvato il programma di installazione del servizio di rete.

![Installazione da disco](image2)

7. Cliccare sul pulsante **Sfoglia**.

8. Passare alla seguente cartella del computer locale:
 - \Programme (x86)\Common Files\COPA-DATA\CDPrpFlt\ per i sistemi operativi a 32-Bit.
 - \Programme (x86)\Common Files\COPA-DATA\CDPrpFlt\ per i sistemi operativi a 64-Bit.
9. **Scegliere il file** `CDPrpFlt.inf`.
 Attenzione: assicurarsi di selezionare l'installer corretto per il sistema operativo utilizzato (32-Bit o 64-Bit).

10. **Confermare la selezione cliccando su **OK**.**
 Si apre la finestra di dialogo per la selezione del servizio di rete.

11. **Selezionare il servizio di rete** `COPA-DATA PRP driver`.

12. **Confermare la selezione cliccando su **OK**
 - Confermare la richiesta di conferma di Windows cliccando sul pulsante "Installla".
 Attenzione: a questo punto potrebbe essere necessario riavviare il computer.

Nota: questa richiesta di conferma non verrà visualizzata se è stato già abilitato il box "...Considera sempre attendibile" in occasione di precedenti installazioni di componenti di programma di zenon.

13. Dopo che l'installazione è stata portata a termine con successo (e dopo il riavvio del computer), il servizio è visibile nella finestra delle proprietà dell'adattatore di rete, nella lista degli elementi

Attenzione

Assicurarsi che l’uso nel sistema produttivo non sia pregiudicato dal necessario riavvio del computer.

10.3.4 Configurazione della connessione PRP (quarto di quattro passaggi)

Prima di eseguire la configurazione, assicurarsi che la connessione LAN e il servizio di rete COPA-DATA PRP driver siano attivi.

CONFIGURAZIONE PRP

1. Avviare il programma PRPCfgDiag.exe. Questo software si trova nella cartella
 C:\Program Files (x86)\Common Files\COPA-DATA\STARTUP. Si apre la finestra di dialogo PRP Configuration and Diagnostics.
Nota: Il **PRP Configuration and Diagnostics Tool** è disponibile solo in lingua inglese.

2. Cliccare sul pulsante **Configuration**.
 Si apre la finestra di dialogo per la selezione degli adattatori di rete.

 ![Configuration Window]

 Nota: Il contenuto del menù a tendina si basa sulle impostazioni di sistema.

3. Selezionare nel menù a tendina l’adattatore di rete per **LAN_A** e **LAN_B**.
 Nota: assicurarsi che le relazioni fra rete fisica e **LAN_A** o **LAN_B** siano state configurate nello stesso modo per tutti i dispositivi di rete compatibili con PRP.

4. Confermare l’assegnazione cliccando su **OK**.

5. Concludere la configurazione cliccando sul pulsante **Exit**.

![Info]

*Una descrizione dettagliata del **PRP Configuration and Diagnostics Tool** si trova nel capitolo **PRP Configuration and Diagnostics Tool** (A pagina: 126).*
10.4 PRP Configuration and Diagnostics Tool

Il PRP Configuration and Diagnostics Tool svolge due compiti:

- Visualizzazione (A pagina: 127)
 Visualizzazione del traffico dati inviati via PRP. La visualizzazione avviene separatamente per i due adattatori di rete utilizzati.
- Configurazione (A pagina: 128)
 Assegnazione degli adattatori di rete configurati.

Nota: questa finestra di dialogo è disponibile solamente in lingua inglese.

Il programma PRPCfgDiag.exe è incluso nel pacchetto Zenon. Trovate questo software sul vostro computer nella cartella C:\Programmi Files (x86)\Common Files\COPA-DATA\STARTUP.

REQUISITI

Per configurare il PRP Konfigurations- und Diagnose Tool e per usarlo, si ha bisogno di quanto segue:

- Due adattatori di rete combinati in bridge nelle impostazioni di sistema.
 Nota: In questo bridge possono essere configurati solamente i due adattatori che sono usati per la comunicazione PRP. Non devono essere contenuti altri adattatori di rete in questo bridge.
- Il driver CDPrpFlt deve essere installato.

Le informazioni relative all’installazione e alle necessarie preparazioni da effettuare nelle impostazioni di sistema si trovano nel capitolo Installazione e configurazione (A pagina: 116).
10.4.1 Statistica

Il flusso di dati viene visualizzato nella finestra di dialogo **Statistics**. La visualizzazione avviene separatamente per i due adattatori LAN.

Il flusso di dati viene sempre registrato, anche quando il tool non è aperto.

Notare: questa finestra di dialogo è disponibile solamente in lingua inglese.

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send count</td>
<td>Visualizzazione del frame Ethernet inviato.</td>
</tr>
<tr>
<td>Receive count</td>
<td>Visualizzazione del frame Ethernet ricevuto.</td>
</tr>
<tr>
<td>Error count</td>
<td>Visualizzazione dei frame PRP con errori.</td>
</tr>
<tr>
<td>Mismatch count</td>
<td>Visualizzazione dei frame PRP ricevuti/inviati differentemente quando il traffico di dati via rete dei due adattatori LAN presenta delle divergenze.</td>
</tr>
<tr>
<td>Link status</td>
<td>Stato della scheda di rete:</td>
</tr>
<tr>
<td></td>
<td>- Active PRP-Supervision frames vengono ricevute in modo corretto per la relativa rete LAN (LAN_A o LAN_B).</td>
</tr>
<tr>
<td></td>
<td>- Inactive Nei due secondi appena trascorsi non è pervenuta nessuna PRP-Supervision frames. Non c'è nessuna stazione PRP nella rete, oppure si è verificato un errore.</td>
</tr>
<tr>
<td>Configuration</td>
<td>Apre la finestra di dialogo per la configurazione (A pagina: 128).</td>
</tr>
<tr>
<td>Exit</td>
<td>Chiude il programma.</td>
</tr>
</tbody>
</table>

Nota: i dati continuano ad essere registrati.
10.4.2 Configurazione

Nella finestra di dialogo **Configuration**:

- Si può assegnare l'adattatore usando il menù a tendina. Il contenuto del menù a tendina si basa sulle impostazioni del bridge di rete. Ulteriori informazioni a questo proposito si trovano nel capitolo Installazione e configurazione (A pagina: 116).

- Viene visualizzato l'indirizzo MAC multicast.

- Vengono visualizzati i messaggi di errore relativi alla configurazione degli adattatori di rete in una finestra di emissione.

![Configuration Window](image)

Attenzione

Il computer deve essere riavviato dopo che sono state fatte delle modifiche alla configurazione.

Nota: questa finestra di dialogo è disponibile solamente in lingua inglese.
<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary physical LAN Adapter</td>
<td>Assegnazione di un adattatore di rete alla connessione fisica per l’adattatore LAN primario. Nel menù a tendina vengono elencati quegli adattatori che sono contenuti nel bridge configurato. Le informazioni a questo proposito si trovano nel capitolo Installazione e configurazione (A pagina: 116).</td>
</tr>
<tr>
<td>Secondary physical LAN Adapter</td>
<td>Assegnazione di un adattatore di rete alla connessione fisica per l’adattatore LAN secondario/ridondante. Nel menù a tendina vengono elencati quegli adattatori che sono contenuti nel bridge configurato. Le informazioni a questo proposito si trovano nel capitolo Installazione e configurazione (A pagina: 116).</td>
</tr>
<tr>
<td>LAN_A/LAN_B Multicast MAC</td>
<td>Indirizzo MAC multicast per PRP-Supervision frames. Questo indirizzo per la comunicazione in rete è predefinito e non può essere modificato. Nota: assicurarsi che questo indirizzo non venga usato da nessun altro adattatore nella rete! L’ultimo byte può essere configurato nel campo di inserimento. Il formato di input di questo inserimento è HEX.</td>
</tr>
<tr>
<td>Error message</td>
<td>Finestra di emissione per i messaggi di errore.</td>
</tr>
<tr>
<td>OK</td>
<td>Accetta tutte le modifiche e passa alla finestra di dialogo Statistic (A pagina: 127).</td>
</tr>
<tr>
<td>Cancel</td>
<td>Rifiuta tutte le modifiche e passa alla finestra di dialogo Statistic (A pagina: 127).</td>
</tr>
</tbody>
</table>

11. Routing

Si raccomanda vivamente di non usare più la proprietà **Attiva routing** per la configurazione di un progetto. Di default, questa proprietà è disattivata di per la rete di zenon.

PROCESSO

Nel routing, i pacchetti dei progetti subordinati vengono inviati attraverso il server dal primo progetto Client (ECP) del ramo. Il computer funge da computer nodo e può inoltrare pacchetti. Tutti i pacchetti di rete provenienti dall’esterno usano questo PC. Questa impostazione, però, può provocare dei “colli di
bottiglia" ed influenza le possibili topologie di rete. Ha senso utilizzarla solo in strutture di rete particolari, come, ad esempio, in reti WAN lente, oppure in reti con routing.

- **Esempio:**
 Se, in una struttura di rete composta da diversi calcolatori, non tutti i computer possono raggiungere gli altri, uno di questi deve agire da router.

- **Implementazione:**
 Il Server 1 e il Server 2 dei progetti subordinati vengono modificati su quello di ECP; questo è il Server 1/Server 2 attivo a Runtime.

11.1 Considerazioni generali sul routing

Si devono tenere presenti due regole fondamentali configurando strutture di rete con routing. Se una di queste due regole non viene rispettata, potrebbero verificarsi dei problemi di comunicazione o altri effetti indesiderati dipendenti dalla rispettiva struttura.

- **Regola 1: Server e livelli**
 Un PC che agisce da server, può essere usato solo in un livello (ricordanza circolare) più volte da server o da Standby. Non può più essere definito come server in un livello superiore o inferiore!

- **Regola 2: Progetti Standalone**
 Se il progetto di partenza è un progetto standalone, si può usare al di sotto un solo livello di progetti di rete!

CLIENT INVIA AL SUO SERVER

- Il client manda il pacchetto al server attivo nel progetto a Runtime.
- Se il progetto su questo computer non è server, il pacchetto continua ad essere inviato finché non arriva al server.
- Questa funzionalità non viene influenzata da un progetto di integrazione.

SERVER INVIA AD UN CLIENT CON ROUTING.

1. Se il server ha una connessione diretta con il client, il pacchetto viene inviato lì.
2. Se non esiste una connessione con il computer di destinazione, il server invia il pacchetto a tutti i computer su cui il progetto è attivo e per i quali funge da server.
3. Se il nodo ha una connessione diretta con il client, il pacchetto viene inviato lì.
4. Se il computer funge da nodo, il pacchetto viene inviato a tutti i computer che si sono connessi al computer nodo. Se il computer di destinazione è anche il computer sorgente, il pacchetto non viene inoltrato.
5. La procedura riprende dal punto 3.

Nota: i punti 2 e 4 vengono eseguiti solo se il routing è attivo su quei computer.

Info

Il server e il Server-Standby non devono corrispondere a quelli configurati sui computer client, ma possono variare a seconda della topologia di rete sui singoli computer.

CHE COSA È UNA CONNESSIONE CLIENT?

Per connessione client si intende una connessione servizio di rete che viene instaurata da un client con il server primario o il Server-Standby. La si riconosce dal fatto che esiste la connessione con la porta 1100 sul computer di destinazione.

Attenzione

Non è garantito che un client aggiunto ad una topologia funzionante possa funzionare. Soprattutto su computer solo client, il routing può determinare il fatto che alcuni progetti non possano essere raggiunti dal server.

CONTROLLA ROUTING

Per controllare le impostazioni relative al routing, usate la procedura descritta in "Gestire topologia di rete (A pagina: 70)".

11.2 Compatibilità:

REGOLE PER IL ROUTING PRIMA DELLA VERSIONE 6.50 DI ZENON:

1. Il primo progetto client di rete di un ramo su un PC definisce il server e il Server-Standby per tutti i progetti subordinati nel ramo. Questo vale anche:
 • Se un progetto subordinato su questo PC è server o Server-Standby.
 • Per progetti che in verità non hanno un Server Standby.

2. Se il progetto superiore non è un progetto di rete o non è un server, i rami dei sotto-progetti del progetto di partenza vengono considerati in parallelo. In questo modo diversi computer possono essere server per i progetti subordinati. Per i rami valgono le regole a partire del punto 1.

3. I progetti standalone non vengono presi in considerazione per la topologia, fatta eccezione per il progetto di partenza.
4. Se il progetto di partenza non è server (dunque standalone, client oppure standby che non gestisce il processo), il routing non è attivato nel servizio di rete. Questo riguarda solamente la direzione dal server al client.

REGOLE PER IL ROUTING A PARTIRE DALLA VERSIONE 6.50 DI ZENON:

Di default, la proprietà Attiva routing è disattivata a partire dalla versione 6.50.

SENZA ROUTING

Se nel progetto di partenza sul computer non è attiva la proprietà Attiva routing, il routing non viene eseguito. In questo caso, ogni progetto si collega direttamente al computer che funge da server. Il computer non è un nodo ed i pacchetti non vengono inoltrati da questo calcolatore.

CON ROUTING

Le regole sono quelle valide per le versioni precedenti alla 6.50.

Eccezione:
- Un progetto che si trova sul computer che agisce da server o da standby, rimane server o standby anche se il progetto superiore usa un altro server o standby.

12. Autorizzazione di rete

Un progetto di rete può essere gestito da tutte le stazioni nello stesso modo se sono state eseguite le impostazioni di base.

Gestire significa in questo caso intervenire attivamente nel processo, cioè:
- Imposta valori
- Esegui le ricette
- Ripristina allarmi
- ecc.

C’è dunque la possibilità che due utenti vogliano impostare contemporaneamente da due stazioni diverse un valore differente per la stessa variabile.

In questo caso:
- Entrambe le azioni vengono eseguite.
Il valore inserito per ultimo sovrascrive tutti i precedenti

BLOCCO DI AZIONI SU CLIENT TRAMITE AUTORIZZAZIONE OPERATIVA

Tuttavia zenon offre la possibilità di gestire il progetto solamente da una stazione alla volta. In questo caso, l’operatore deve ottenere l’autorizzazione operativa in rete sulla sua stazione, prima di poter gestire il progetto. L’apertura di immagini e l’accesso in lettura a liste come AML, CEL, ricette, ecc., è sempre possibile in qualsiasi momento da ogni stazione.

Info

Le autorizzazioni operative per progetti senza rete possono essere implementate usando l’analisi di una variabile binaria per la proprietà di progetto Blocco utente. Per i dettagli a questo proposito si rimanda al capitolo Autorizzazioni operative della guida dedicata alla Gestione di progetto e workspace.

ELEMENTI DI ZENON SUPPORTATI

I seguenti elementi di zenon supportano l’Autorizzazione di rete, sia l’autorizzazione utenti globale che l’autorizzazione utente su modello di impianto:

- Orologio
- Slider universale
- Collega testo
- Bargraf
- Strumento analogico
- Valore numerico
- Interruttore

L’autorizzazione utenti globale, inoltre, richiede per ogni accesso in scrittura a Runtime una corrispondente autorizzazione operativa.

PROCESSO

Se la proprietà Autorizzazione di rete è stata configurata, vale quanto segue:

- Se si vuole eseguire un'azione, bisogna anzitutto ottenere la relativa autorizzazione.
- Se la gestione è bloccata da un altro computer, si apre una finestra di dialogo sul calcolatore che in quel momento ha l’autorizzazione.
- L’utente che in quel momento ha l’autorizzazione, può renderla disponibile oppure no.
- Se non c’è nessuna risposta, l’autorizzazione viene resa di nuovo disponibile allo scadere di un timeout predefinito.
- Se il sistema rileva un’interruzione della connessione di rete, l’autorizzazione per questo calcolatore viene resettata.

Per i dettagli vedere i capitoli:
- Configurare le autorizzazioni operative (A pagina: 135)
- Autorizzazione operativa a Runtime (A pagina: 137)

Info

Le procedure di autorizzazione operativa generano inserimenti corrispondenti nella CEL.

VARIABILI DI SISTEMA PER L’AUTORIZZAZIONE OPERATIVA

Le variabili di sistema forniscono informazioni relative alle autorizzazioni operative:
- [Rete] Autorizzazione di rete: Computer in possesso:
 Nome del calcolatore che ha l’autorizzazione operativa (tipo di dato: Stringa)
- [Rete] Autorizzazione rete: disponibile su questo PC:
 Il computer ha l’autorizzazione operativa (tipo di dato: Bool)
- [Rete] Autorizzazione negata:
 Il computer richiede l’autorizzazione operativa, ma non la riceve (tipo di dato: Bool)

Info

Le variabili di sistema valgono solo per le autorizzazioni utenti globali. Nel caso di autorizzazione utente su modello di impianto, la visualizzazione a Runtime viene eseguita con variabili direttamente collegate al gruppo di impianti. Ulteriori informazioni su questo argomento si trovano nella parte della guida relativa alla definizione di impianto, nel capitolo Configurazione nell’Editor.

12.1 Tipi di autorizzazione operativa

In zenon esistono i seguenti tipi di autorizzazione operativa:
- Autorizzazione utenti globale
 - Può essere attivata o disattivata solo per l’intero progetto.
 - L’autorizzazione operativa viene bloccata o resa disponibile per tutti gli elementi.
- Autorizzazione utente su modello di impianto
 - Può essere attivata o disattivata per parti del progetto, sulla base di un modello di impianto.
- L’autorizzazione operativa viene bloccata o resa disponibile per gruppi di impianti.

⚠️ **Attenzione**

Per il modulo Batch Control non esiste il tipo di autorizzazione operativa autorizzazione utente su modello di impianto.

12.2 Configurazione nell'Editor

Per consentire l’uso di autorizzazioni operative in rete:

- Attivare la proprietà **Autorizzazione di rete** (gruppo “Rete” delle proprietà di progetto).
- Configurare le proprietà del gruppo “Autorizzazione”.
- Creare una o più funzioni che consentiranno di acquisire e rendere disponibile l’autorizzazione operativa a Runtime

AUTORIZZAZIONE UTENTE SU MODELLO DI IMPIANTO

Se l’autorizzazione operativa viene gestita via modello di impianto, si deve anzitutto procedere a collegare variabili con il gruppo di impianti corrispondente.

Ulteriori informazioni a questo proposito si trovano nel capitolo Autorizzazione utente su modello di impianto della parte della guida dedicata alla Definizione di impianto.

12.2.1 Attivare le autorizzazioni operative

Per attivare autorizzazioni operative, eseguire i seguenti passi di configurazione:

1. Nelle proprietà di progetto, passare al gruppo **Rete**.
2. Selezionare il tipo desiderato fra quelli proposti dal menù a tendina **Autorizzazione di rete**.
3. Definire il **Timeout per la richiesta** [s]:
 - definisce l’intervallo di tempo entro il quale il computer può rispondere alla richiesta di rilascio dell’autorizzazione. Allo scadere di questo tempo, l’autorizzazione operativa viene rilasciata automaticamente.
4. **Default**: 60 secondi
5. Definire il **Timeout per autorizzazione utenti** [s]:
 - definisce l’intervallo di tempo entro il quale il computer che ha l’autorizzazione operativa, deve contattare il server primario. Allo scadere di questo tempo, l’autorizzazione operativa viene rilasciata automaticamente. Così il sistema rileva il verificarsi di interruzioni nella connessione di
rete. Non è dunque possibile che un computer non raggiungibile blocchi l'autorizzazione operativa.

Default: 60 secondi.

Attenzione: selezionare un intervallo di tempo inferiore al Timeout di rete.

12.2.2 Configurazione nell'Editor

Per ottenere le autorizzazioni operative oppure per renderle disponibili, devono esistere a Runtime le relative funzioni. A questo scopo, creare due pulsanti cui verranno poi assegnate le funzioni corrispondenti:

- Richiedi autorizzazione:
 Ottiene l’autorizzazione per il terminale dell’utente.
- Rilascia autorizzazione:
 Rende di nuovo disponibile l’autorizzazione senza una richiesta esplicita.

RICHIEDI AUTORIZZAZIONE

1. Creare una nuova funzione.
2. Selezionare nel gruppo *Rete* la funzione *Autorizzazione di rete*.
3. Si apre la finestra di dialogo di selezione dell'autorizzazione di rete.
4. Selezionare Richiedi.

Quando si esegue questa funzione nel Runtime, si ottiene l'autorizzazione di rete per la propria stazione.

RILASCIA AUTORIZZAZIONE

1. Creare una nuova funzione.
2. Selezionare nel gruppo *Rete* la funzione *Autorizzazione di rete*.
3. Si apre la finestra di dialogo di selezione dell'autorizzazione di rete.
4. Selezionare **Rilascia**.

Quando si esegue questa funzione nel Runtime, si rende di nuovo disponibile l’autorizzazione di rete.

Info

*Ulteriori informazioni a questo proposito si trovano nel capitolo *Creare una funzione di tipo “Autorizzazione di rete”* (A pagina: 145).*

12.3 Autorizzazione operativa a Runtime

Se la proprietà di progetto **Autorizzazione di rete** è stata configurata, le operazioni di gestione attive vengono eseguite a Runtime solamente se la stazione in questione ha un’autorizzazione operativa.

Se non esiste l’autorizzazione operativa, la si può richiedere eseguendo la funzione corrispondente.

ESEMPIO

Si vuole scrivere un valore impostabile su una variabile e non si dispone dell’autorizzazione operativa corrispondente:

1. Il valore impostabile non viene inviato all’hardware quando si clicca sul pulsante.
2. Si apre invece una finestra di dialogo contenente l’informazione che l’utente non è in possesso dell’autorizzazione operativa per questo progetto.
3. Cliccare sul pulsante **Ottieni autorizzazione operativa** configurato in fase di progettazione.

NESSUN ALTRO COMPUTER BLOCCA L’AUTORIZZAZIONE OPERATIVA:

L’autorizzazione è disponibile:

- Si ottiene l’autorizzazione.
- Si può scrivere il valore impostabile.
- Dopo aver eseguito l’operazione, si può rendere di nuovo disponibile l’autorizzazione agli altri utenti usando la funzione **Autorizzazione di rete** con l’opzione **Rilasciare attivata**.
UN ALTRO COMPUTER BLOCCA L’AUTORIZZAZIONE OPERATIVA:

L’autorizzazione è bloccata:
- Si apre una finestra di dialogo sul computer che causa il blocco; tramite questa finestra di dialogo si potrà rilasciare l’autorizzazione in questione.
- Opzioni di rilascio a disposizione dell’utente del computer che causa il blocco:
 - **Si**: L’autorizzazione viene trasferita all’altro computer.
 - **No**: L’autorizzazione rimane bloccata.
 - **Nessuna reazione**: Incomincia a scorrere un timeout che corrisponde a quello definito nella proprietà **Timeout per autorizzazione utenti [s]**. Scaduto il timeout, l’autorizzazione viene rilasciata automaticamente.

12.4 Modifiche di progetto - Reload a Runtime

Quando si apportano modifiche a parti del progetto che hanno rilevanza in relazione ad una autorizzazione operativa (proprietà di progetto, modello di impianto, variabili), l’autorizzazione operativa attuale verrà applicata e sarà effettiva dopo un reload o un riavvio del Runtime.

Tenere presente quanto segue:
- **Sul client**, la vecchia configurazione ha validità finché non è stato eseguito il reload.
- **Se token già assegnati non sono più necessari già a Runtime dopo il reload**, questi verranno rilasciati dopo l’esecuzione del reload stesso. **Per questa ragione**, il client non invierà nessun messaggio al server riguardanti token occupati. **Il server**, da parte sua, **terminerà il monitoraggio dei token sul client**. Verrà generato un inserimento corrispondente nei LOG.
- Quando viene eseguito il reload del Runtime, c’è un reload automatico anche dei tempi impostati per le proprietà **Timeout per autorizzazione utenti [s]** e **Timeout per la richiesta [s]**. Le richieste di ottenimento di un’autorizzazione operativa inoltrate prima del reload che sono ancora aperte, verranno rifiutate e non più modificate.
Nota: Se si diminuisce il valore impostato per la proprietà “Timeout per autorizzazione utenti”, i client che non hanno ancora eseguito il reload, perderanno i loro token in modo relativamente veloce perché si registreranno troppo tardi sul server.

RELOAD RITARDATO DAL SISTEMA

Il sistema ritarda il reload del Runtime se:

- L'utente apre un menù contestuale o una finestra di dialogo.
- Viene visualizzato un messaggio.

In questo caso, il reload viene eseguito solo quando questi elementi sono stati chiusi di nuovo.
Autorizzazione operativa - Inserimenti nei LOG.

<table>
<thead>
<tr>
<th>Testo</th>
<th>Livello</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Token no longer relevant for group <group></td>
<td>Project DEBUG</td>
<td>Dopo il reload, il gruppo <group> non è più attuale e non ha più nessuna rilevanza per l’autorizzazione operativa.</td>
</tr>
<tr>
<td>Token no longer exists for group guid <guid></td>
<td>Project DEBUG</td>
<td>Il gruppo con il Guid <guid> è stato rimosso con il reload.</td>
</tr>
<tr>
<td>Token reserved for group <group> for host <host> with id <id></td>
<td>Project DEBUG</td>
<td>Messaggio sul server o sul Server-Standby relativo all’assegnazione di un token: Il token per il gruppo <group> per il PC <host> con id <id> è stato riservato.</td>
</tr>
<tr>
<td>Token denied for host <host></td>
<td>Project DEBUG</td>
<td>Messaggio sul server che informa che la richiesta token per Host <host> viene rifiutata. Sfondo: uno dei gruppi richiesti è già riservato per un altro PC.</td>
</tr>
<tr>
<td>LOG SendData Project:<project> To:<hostname> Modul:8 Prior:1 Class:CEqTokenReservationMsg</td>
<td>NET DEBUG</td>
<td>Informazione relativa ad una prenotazione nel progetto <project>. Inviata dal server al Server-Standby.</td>
</tr>
<tr>
<td>LOG ReceiveData Project:<project> From:<server> To:<hostname> Modul:8 Class:CEqTokenReservationMsg</td>
<td>NET DEBUG</td>
<td>Informazione di prenotazione inviata dal server e ricevuta dal Server-Standby.</td>
</tr>
<tr>
<td>Token reservation lifted for <group> for id <id></td>
<td>Project DEBUG</td>
<td>La prenotazione per il gruppo <group> con l’ID <id> è stata revocata. Sfondo: la prenotazione non è più necessaria perché il token può essere assegnato direttamente.</td>
</tr>
<tr>
<td>LOG SendData Project:<project> To:<host> Modul:8 Prior:1 Class:CEqTokenRemoveReservationMsg</td>
<td>NET DEBUG</td>
<td>Messaggio di rete del server al Server-Standby per la sinchronizzazione della prenotazione.</td>
</tr>
<tr>
<td>LOG ReceiveData Project:<project> From:<server> To:<host> Modul:8 Prior:1 Class:CEqTokenRemove</td>
<td>NET DEBUG</td>
<td>Messaggio di rete sul Server-Standby per la sinchronizzazione della prenotazione.</td>
</tr>
<tr>
<td>oveReservationMsg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Token reservation lifted due to timeout</td>
<td>Project Debug</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La prenotazione è stata revocata perché c’è da troppo tempo.</td>
<td></td>
</tr>
<tr>
<td>Standby received 1 token reservations</td>
<td>Project DEBUG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prenotazione/i esistente/i è/sono stata/e trasmessa/e dal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>server allo Standby in avvio.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sfondo: la prenotazione deve essere nota per un eventuale</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cambio server.</td>
<td></td>
</tr>
<tr>
<td>Token reservation</td>
<td>Project DEEPDEBUG</td>
<td></td>
</tr>
<tr>
<td><code><id=1></code> for host WKS086-W7X64 with 1 groups:</td>
<td>Ogni prenotazione viene registrata in una riga apposita:</td>
<td></td>
</tr>
<tr>
<td><code><relevant.screen.batch></code></td>
<td> ID prenotazione</td>
<td></td>
</tr>
<tr>
<td></td>
<td> Nome dell’host che prenota.</td>
<td></td>
</tr>
<tr>
<td></td>
<td> Numero del gruppo</td>
<td></td>
</tr>
<tr>
<td></td>
<td> Nome del gruppo:</td>
<td></td>
</tr>
</tbody>
</table>
| Token acquired for Group: <voller Gruppenname> | Project DEBUG | Messaggio di acquisizione di un’autorizzazione operativa per il gruppo <Nome gruppo completo>.
(Server/Client) |
| Token released for Group: <voller Gruppenname> | Project DEBUG | Messaggio di rilascio di un’autorizzazione operativa per il gruppo <Nome gruppo completo>.
(Server/Client) |
| SendData Project:<Projekt> To:C Modul:8 Prior:1 Class:CEqReleaseTokenMsg | Net DEBUG | Indica che il server ha inviato un ReleaseMessage a tutti i client. |
| SendData Project:<Projekt> To:<Client> Modul:8 Prior:1 Class:CEQTokenInfoAnswer | Net DEBUG | Il server invia al client <Client> una Token Info. |
| ReceiveData Project:MANYMODULS From:<Client> To:S Modul:8 Class:CD_CNetTokenQuit | Net DEBUG | Il server ha ricevuto una conferma del client <Client> che non esiste. |
| SendData Project:MANYMODULS To:S Modul:8 Prior:1 Class:CD_CNetTokenQuit | Net DEBUG | Sul client è stata inviata la conferma al server che esso (il client) non esiste. |
13. Funzioni di zenon per la rete

Funzioni speciali di zenon per la rete:

- **Autorizzazione di rete** (A pagina: 143)
- Cambio ridondanza
 - a) Nella modalità di ridondanza: **Dominante** (A pagina: 145)
 - b) Nella modalità di ridondanza: **Non dominante**
 - c) Nella modalità di ridondanza: **Ponderata**

In generale, quando si usano delle funzioni in rete, bisogna tener presente la postazione di esecuzione (A pagina: 155). Per alcune funzioni, la postazione di esecuzione può essere configurata liberamente, per altre è fissa.

13.1 Autorizzazione di rete

Eseguendo la funzione **Autorizzazione di rete** a Runtime, si possono richiedere o trasferire autorizzazioni operative, e le si può filtrare per gruppi di impianti.
Funzioni di zenon per la rete

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prendere</td>
<td>Richiede l’autorizzazione operativa per il PC sul quale è stata eseguita la chiamata funzione.</td>
</tr>
<tr>
<td>Rilasciare</td>
<td>Trasferisce l’autorizzazione operativa al PC che ne fa richiesta.</td>
</tr>
<tr>
<td></td>
<td>Nota: ogni cliente può solo rilasciare i suoi token. Non c’è un rilascio generale.</td>
</tr>
<tr>
<td>Gruppi di impianti</td>
<td>L’autorizzazione operativa viene richiesta o rilasciata per le variabili del gruppo di impianti selezionato.</td>
</tr>
<tr>
<td></td>
<td>Cliccando sul pulsante ... si apre la finestra di dialogo che consente di selezionare un modello di impianti. È possibile una selezione multipla e un filtro gerarchico.</td>
</tr>
<tr>
<td></td>
<td>Se non si seleziona nessun gruppo di impianti, la richiesta o il rilascio interesserà tutto il progetto.</td>
</tr>
<tr>
<td></td>
<td>Nota: nella finestra di selezione vengono visualizzati solamente quei gruppi di impianti per i quali è attivata la proprietà Modello impianto rilevante per le autorizzazioni utenti. Questa proprietà deve essere attivata nel modello di impianti sovraordinato.</td>
</tr>
<tr>
<td></td>
<td>Se nella finestra di dialogo di configurazione della funzione è stato impostato un gruppo di impianti non più rilevante per l’autorizzazione operativa, non verrà assegnata nessuna autorizzazione operativa. In questo caso verrà generato un messaggio nei LOG.</td>
</tr>
<tr>
<td>Visualizza dialogo a Runtime</td>
<td>Checkbox che consente di definire se questa finestra di dialogo debba essere visualizzata a Runtime o meno:</td>
</tr>
<tr>
<td></td>
<td>- Attiva: la finestra di dialogo verrà visualizzata a Runtime. In questo caso, sarà possibile modificare le impostazioni prima dell’esecuzione della funzione.</td>
</tr>
<tr>
<td></td>
<td>- Non attivo: la finestra di dialogo non verrà visualizzata a Runtime. In questo caso verranno applicate le impostazioni eseguite nell’Editor in questa finestra di dialogo.</td>
</tr>
</tbody>
</table>

CHIUDERE LA FINESTRA DI DIALOGO

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Applica le impostazioni e chiude la finestra di dialogo.</td>
</tr>
<tr>
<td>Annulla</td>
<td>Annulla tutte le modifiche e chiude la finestra di dialogo.</td>
</tr>
<tr>
<td>Guida</td>
<td>Apre la guida online.</td>
</tr>
</tbody>
</table>
13.1.1 Creare una funzione di tipo “Autorizzazione di rete”

La funzione **Autorizzazione di rete** serve a richiedere o rilasciare a Runtime un’autorizzazione operativa per un’azione.

CONFIGURAZIONE

Procedura di creazione della funzione:

1. Creare una nuova funzione:

 Nella barra degli strumenti, oppure nel menù contestuale del nodo "Funzioni", selezionare il comando **Nuova funzione**.

 Si apre la finestra di dialogo che consente di selezionare una funzione.

2. Passare al nodo **Rete**.

3. Selezionare la funzione **Autorizzazione di rete**.

 Si aprirà la finestra di dialogo per configurare la funzione.

4. Selezionare l’opzione desiderata:

 a) **Prendere**

 Richiedere la autorizzazione operativa per elementi bloccati in rete.

 b) **Rilasciare**

 Trasferisce la autorizzazione operativa.

5. Facoltativo - in caso di “Autorizzazione utente su modello di impianto”:

 Collegare i gruppi di impianti corrispondenti cliccando sul pulsante ...

 Nota: nella finestra di selezione vengono visualizzati solamente quei gruppi di impianti per i quali è attivata la proprietà **Modello impianto rilevante per le autorizzazioni utenti**.

 Ulteriori informazioni su questo argomento si trovano nella parte della guida relativa alla definizione di impianto, nel capitolo **Configurazione nell’Editor**.

6. Assegnare un nome alla funzione nella proprietà **Nome**.

7. Collegare la funzione ad un pulsante.

13.2 Cambio ridondanza in una rete ponderata

Con questa funzione si può passare manualmente dal server primario al Server-Standby a Runtime. Il server primario attuale diventerà Server-Standby e viceversa.
Questa funzione è disponibile per tutte le modalità di ridondanza (proprietà Tipo di ridondanza dell'Editor di zenon):

- Non dominante
- Dominante
- Ponderata

Nota: la funzione "Cambio ridondanza" è disponibile solamente se è attiva la proprietà Rete attiva.

ESEMPI DI APPLICAZIONE:

Possibili applicazioni pratiche sono:

- Manutenzione del server primario.
- Migliore collegamento hardware del Server-Standby.
- Nella rete ponderata: Disattivare temporaneamente l'analisi.

⚠️ Attenzione

Questa funzione non si presta a testare la ridondanza, visto che il comportamento è diverso da quello in caso di malfunzionamento del server.

RITARDO DI COMMUTAZIONE

Alcuni moduli di zenon possono ritardare il cambio di ridondanza. Per es., un comando in esecuzione ritarda il cambio di ridondanza.

Rimandiamo alle descrizioni dei moduli che si trovano nel capitolo Comportamento dei moduli di zenon (A pagina: 149) di questo manuale.

13.2.1 Configurazione in zenon

CREARE UNA FUNZIONE DI TIPO "CAMBIO RIDONDANZA"

La funzione di tipo Cambio ridondanza serve a controllare i ruoli di Server primario e Server-Standby in una rete di zenon.

CONFIGURAZIONE

Procedura di creazione della funzione:
1. Creare una nuova funzione:
 Nella barra degli strumenti, oppure nel menù contestuale del nodo "Funzioni", selezionare il comando **Nuova funzione**.
 Si apre la finestra di dialogo che consente di selezionare una funzione.

2. Passare al nodo **Rete**.

3. Selezionare la funzione **Cambio ridondanza**.
 Si apre la finestra di dialogo per la configurazione del cambio ridondanza (A pagina: 147).

4. Configurare il comportamento del cambio ridondanza.

5. Assegnare un nome alla funzione nella proprietà **Nome**.

 Suggerimento

 Configurare una funzione di cambio ridondanza separata per ogni direzione di switch.

13.2.2 Finestra di dialogo di configurazione del cambio ridondanza

Nella finestra di dialogo **Cambio ridondanza** si configura il comportamento di un **Cambio ridondanza** previsto.
Direzione di Switch

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toggle:</td>
<td>Server primario e Server-Standby si scambiano i ruoli.</td>
</tr>
<tr>
<td>Server 1</td>
<td>Il Server 1 diventa (o rimane) Server primario.</td>
</tr>
<tr>
<td>Server 2</td>
<td>Il Server 2 diventa (o rimane) Server primario.</td>
</tr>
<tr>
<td>Nessuna (riattiva valutazione)</td>
<td>Non avviene nessun cambio. Si impedisce, invece, che si verifichi un cambio per l'intervallo di tempo configurato nel campo proprietà Tempo di soppressione.</td>
</tr>
<tr>
<td></td>
<td>Se il Tempo di soppressione è 0, il cambio ridiventa immediatamente possibile.</td>
</tr>
<tr>
<td></td>
<td>Nota: questa opzione è disponibile solo in una rete ponderata. Se si passa dalla rete ponderata a quella dominante o non dominante, questa selezione deve essere sostituita da una direzione di switch consentita alla successiva apertura della funzione.</td>
</tr>
</tbody>
</table>

Tempo di Soppressione

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo di soppressione</td>
<td>Il tempo, espresso in minuti, nel corso del quale non avviene nessun cambio automatico di ridondanza dovuto ad una modifica nell'analisi.</td>
</tr>
<tr>
<td></td>
<td>Se il valore impostato è 0, il cambio automatico viene eseguito nel modo configurato nelle regole di valutazione.</td>
</tr>
<tr>
<td></td>
<td>con segno: da 0 a 10080 minuti (= una settimana)</td>
</tr>
<tr>
<td></td>
<td>Si prega di tener presente: il server primario attuale (Server 1 o Server 2) rimane server primario durante questo intervallo di tempo, indipendentemente dal risultato dell'analisi.</td>
</tr>
<tr>
<td></td>
<td>Se Banda morta post-commutazione[s] e Tempo di soppressione sono stati configurati diversamente in una rete ponderata, prevale il valore maggiore.</td>
</tr>
<tr>
<td></td>
<td>Nota: questa opzione è disponibile solo in una rete ponderata.</td>
</tr>
</tbody>
</table>

Navigazione

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Con i progetti di rete si deve tenere presente come si comportano i singoli moduli e le singole funzioni in rete.

14.1 AML e CEL

GESTIONE ALLARMI

Info

Quando il Server-Standby assume il ruolo di server primario in caso di disfunzione o guasto del server primario originale, vengono integrati e aggiunti i dati mancanti in AML, CEL e archivi. Questi dati mancanti provengono dal buffer interno del Server-Standby. Questo buffer viene rifornito di valori dai driver.

LISTA EVENTI CRONOLOGICA (CEL)

La CEL viene gestita sul server primario. Le modifiche vengono sincronizzate fra server primario e Server-Standby.

Nella rete ponderata, non vengono creati nuovi inserimenti CEL per un cambio di ruolo server avvenuto sulla base dell’analisi.
Suggerimento

Se si vuole protocollare i risultati delle analisi nella CEL, creare una variabile del driver di sistema "[Rete] Risultato valutazione Server 1", oppure "[Rete] Risultato valutazione Server 2":

- Selezionare nel Workspace, nel nodo Variabili, l’inserimento Nuova variabile ...
- Selezionare come driver SYSDRV - Driver per variabili del driver di sistema.
- Nella finestra di dialogo Variabile del driver di sistema, selezionare nel menù a tendina Tema l’inserimento Rete.
- Creare una matrice di reazione numerica, abilitare l’opzione "Interpreta ogni cambio valore come nuova violazione" e settare l’opzione "Nella CEL".
- Collegare la matrice di reazione appena creata alle due variabili.

14.2 Server di archiviazione

L’archiviazione viene eseguita sul server primario.

Il server primario sincronizza i dati d’archivio con il Server Standby e risponde alle richieste dei client (per es. apertura di un’immagine di tipo Trend esteso).

Info

Quando il Server-Standby assume il ruolo di server primario in caso di disfunzione o guasto del server primario originale, vengono integrati e aggiunti i dati mancanti in AML, CEL e archivi. Questi dati mancanti provengono dal buffer interno del Server-Standby Questo buffer viene rifornito di valori dai driver.

CAMBIO RIDONDANZA

Il cambio di ridondanza può subire un ritardo causato dal modulo Archiviazione di zenon.

Se delle variabili di un altro progetto vengono salvate in un archivio, cambia la procedura di start del Runtime nella rete di zenon. In questo caso, infatti, gli archivi vengono avviati solo dopo il caricamento di tutti i progetti.

In questo modo si garantisce che vengano riconosciute tutte le variabili da archiviare prima che inizi il processo di archiviazione ed il calcolatore assuma il ruolo di server primario.
Esempio

Il Runtime di zenon viene avviato su quel computer configurato in fase di progettazione come Server 1, oppure Server 2.

- Il Runtime parte assumendo il ruolo di Server-Standby.
- Vengono caricati tutti i progetti.
- L’archiviazione viene sincronizzata.

I passaggi sopra descritti avvengono indipendentemente dal ruolo attuale o dall’analisi del PC.

Solo dopo la conclusione di tutti questi passaggi, viene effettuato - se necessario - un cambio di ridondanza.

14.3 Batch Control

Il modulo Batch Control è perfettamente compatibile per un uso in rete con tecnologia client/server. Ciò significa che le ricette batch possono essere create, duplicate, modificate, cancellate ecc. su un client. La completa gestione delle ricette, però, avviene sempre sul server. Per il resto tutto il processo di controllo (le operazioni di avvio, messa in pausa, fine ecc. di una ricetta) può essere gestito da un client. Sono possibili anche cambi di modo e operazioni manuali come salta.

Attenzione

Il modulo Batch Control non supporta la ridondanza. Non c’è sincronizzazione sul Server-Standby. Quando il server smette di funzionare, le ricette batch in esecuzione non vengono proseguite sullo Standby! Non è inoltre possibile avviare ricette mentre il server 2 configurato è il server principale del processo.

Quando si usa il modulo Batch Control in rete, vale quanto segue:

ASSEGNAZIONE

L’assegnazione forzata può avvenire sia dal server che dal client.

FUNZIONI

Le funzioni vengono eseguite sempre sul server.
Comportamento dei moduli di zenon in rete.

FASI
- Modifica di fasi in ricette master:
 - Modalità test le modifiche vengono eseguite sul server.
- Ricetta di controllo: le modifiche vengono eseguite sul server.
- Se una ricetta viene salvata in rete, tutti i client che la usano vengono aggiornati.
- Se una ricetta viene aperta su un client, viene visualizzata sempre la versione attuale del server, anche se lì non è stata ancora salvata.
- Se una ricetta viene cancellata su un computer, viene visualizzato un messaggio su tutti i computer che hanno aperto questa ricetta; questo messaggio informa che la ricetta è stata cancellata.

MODALITÀ
- Il cambio della modalità (automatica, semi-automatica, manuale) può essere eseguito dal server e dal client.
- Jumps e avanzamenti step by step in una ricetta possono essere eseguiti sia dal server che dal client

RELOAD
Le modifiche delle ricette non salvate sul client possono essere sovrascritte durante il reload.

RICETTA
- Le ricette possono essere avviate e gestite dal server zenon o dai client zenon.
- Se in una ricetta vengono modificati i parametri mentre la ricetta stessa viene salvata su un altro client zenon, la modifica verrà rifiutata e non eseguita.
- Una ricetta master può essere modificata sul client zenon mentre sul server zenon passa in modalità test e viene inviata al client zenon. In questo caso vengono applicate le modifiche salvate per ultime. Questo significa: se il client zenon salva per ultimo, la ricetta passa di nuovo alla modalità di modifica. Se è lo zenon server a salvare per ultimo, la modifica eseguita dallo zenon client viene rifiutata e la ricetta si trova in modalità test.
- Se si verifica un errore di comunicazione durante la cancellazione di una ricetta o di un modello ricetta parziale, la cancellazione verrà rifiutata e verrà visualizzato un relativo messaggio di errore.
WEB CLIENT

Con un Web Client standard:

- Le impostazioni per griglia e colori possono essere modificate.
- Non si possono creare o modificare ricette.
- La dimensione dell'area di modifica non può essere cambiata.
- Nella barra degli strumenti vengono disattivati tutti i simboli non consentiti; non sarà dunque possibile selezionare gli oggetti corrispondenti.

Queste limitazioni non valgono per il Web Client PRO.

14.4 Gestione user

La gestione utenti avviene sul server primario. Procedura di login:

1. La richiesta di login viene inviata al server primario.
2. Quest'ultimo risponde con la lista degli utenti autorizzati.
3. Il client verifica i dati.

Se si fanno su un client delle modifiche alla gestione utenti a Runtime, la lista user completa viene inviata dal client al server primario.

Info

Utenti Active Directory, ADAM, ADLDS

Se si usano utenti Active Directory, ADAM oppure ADLDS, tutti i computer comunicano (indipendentemente se sono server primario, Server-Standby oppure Client) direttamente con il server Active Directory, ADAM oppure ADLDS.

Il che significa che tutti i computer devono essere nell’infrastruttura corrispondente (per es. dominio Active Directory nel caso di uso di utenti Active Directory); non basta che solo il server primario sia nel dominio Active Directory con i relativi utenti.
14.5 File

Quando server primario e Server-Standby scambiano dei dati, vengono create delle liste per i file di tutti i moduli. Il server primario monitora queste liste per verificare la presenza di modifiche. Le modifiche rilevate vengono poi trasferite al Server-Standby.

⚠️ Attenzione

Il server primario non reagisce a watchdog inviati dal Server-Standby durante la creazione di queste liste. Tenere presente questo fatto quando si definisce il tempo per il timeout di rete.

Con il Trasporto Remoto vengono trasmessi tutti i file necessari per il progetto al sistema di destinazione.

Vengono sempre trasmessi tutti i file delle cartelle:

Standard

- Tutti i file che si trovano nella cartella Runtime (\RT\FILES\zenon\system) del progetto. Questi file determinano l’aspetto e il comportamento del progetto e vengono trasmessi di default:

 📝 Info

 Non vengono trasmessi di default i file con le desinenze:
 - .hot
 - .ho
 - .ret
 - .re

Optional

In più devono essere trasmessi tutti i file che sono stati inseriti nel progetto. La selezione avviene facendo uso della checkbox **attivo** delle impostazioni del Trasporto Remoto. Questi file si trovano nei seguenti sotto percorsi della cartella di progetto:

- \zenon\custom\graphics: per grafiche
- \zenon\custom\lists: per tabelle lingua
- \zenon\custom\media: per tutti i file media
- \zenon\custom\reports: per le tabelle del generatore Report.
- \zenon\custom\help: per i file dell’help
- \zenon\custom\additional: per ulteriori file
Comportamento dei moduli di zenon in rete.

- \zenon\custom\rdlc: per file Report Viewer
- \zenon\custom\drivers: per driver
- \straton: per zenon Logic

Raccomandazione: trasmettere sempre il percorso base di progetto, grafiche, tabelle lingua, tabelle di report e file media.
Dal percorso base di progetto vengono trasmessi di default: i file project.ini, Projekt.vba, monitor.mon e la cartella Progetto.
zenon come standard utilizza sempre percorsi relativi e non più percorsi assoluti in modo da garantire che i dati possano essere ritrovati sul sistema del destinatario.
Per i dati da trasmettere opzionalmente dovrebbero essere utilizzati i percorsi originali (campo vuoto “destinazione”), in modo da permettere a zenon di identificarli nuovamente anche sul sistema del destinatario.

PROGETTO GLOBALE

Quando nel workspace si trova un progetto globale, questo viene trasmesso automaticamente. Non deve essere effettuata nessun’altra impostazione. Verranno sempre trasmessi tutti i file necessari per il progetto globale poiché inclusi nel progetto specifico!

⚠ Attenzione

Se la differenza di tempo tra server e client è superiore a 5 secondi, non verrà più sincronizzato nessun file.

14.6 Trend esteso

Il Trend esteso visualizza informazioni di archivi e dati online. Questi dati vengono salvati sul server primario e, se necessario (apertura di un’immagine di trend sul client), vengono richiesti dal server primario.

14.7 Funzioni

Per quello che riguarda le funzioni che vengono usate in rete:

- In alcuni casi, il luogo in cui vengono eseguite può essere configurato liberamente.
- In altri casi, invece, questo luogo è definito in modo fisso.

CONFIGURARE LUOGO DI ESECUZIONE

Per quello che riguarda le funzioni il cui luogo di esecuzione può essere definito liberamente, l’utente può configurarne i parametri nelle proprietà della funzione.

Per definire il luogo di esecuzione:

1. Nelle proprietà della funzione, passare al gruppo Esecuzione:
2. Selezionare il luogo di esecuzione desiderato attivando la checkbox corrispondente. E’ possibile una selezione multipla:
 - PC attuale: la funzione verrà eseguita sul PC attuale.
 - Server primario: la funzione verrà eseguita sul server primario.
 - Server Standby: la funzione verrà eseguita sul Server-standby.
 - Client: la funzione verrà eseguita su tutti i client.

FUNZIONI IN RETE - PANORAMICA

La seguente tabella mostra dove vengono eseguite le varie funzioni.

Legenda:

- **Configurabile**: il comportamento può essere configurato.
 - +: Si
 - -- No
 - O: Default

- Se non configurabile, O indica il luogo di esecuzione:
 - Computer attivo
 - Server primario
 - Server-standby
 - Client
<table>
<thead>
<tr>
<th>Funzione</th>
<th>Configurabile</th>
<th>PC attuale</th>
<th>Server primario</th>
<th>Server Standby</th>
<th>Client</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML e CEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ripristina lampeggio allarmi</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conferma il riconoscimento d’allarme</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ripristina allarmi</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Collegare/scollegare gruppo allarmi/eventi</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lista informazione allarmi, Gruppi/Classi d’allarme/eventi attivazione/disattivazione</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lista di informazione allarmi attiva</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attiva/disattiva allarmi</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disattiva allarmi</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esporta allarmi</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salva buffer AML-CEL</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Esporta: lista CEL</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stampa lista allarmi o CEL</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crea/stampa documento IPA</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stampa online on/off</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Inizia una nuova pagina per la stampa online</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio stampante online</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applicazione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selezionare stampante</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avvio Load Management</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termine Load Management</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stampa diagramma Trend esteso</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambia tavolozza colori</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestione funzioni ON</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funzioni: Disattiva/Attiva</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestione funzioni OFF</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apri guida</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reload</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determinazione manutenzioni in corso</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attiva evento PFS</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attiva/Disattiva progetto di simulazione</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simula right click</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salvataggio dati ritentivi</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termina Runtime</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valutazione euristica S7-Graph</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esegui funzione SAP</td>
<td>+</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio lingua</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topologia - Ricerca cortocircuito</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topologia - LoadShedding</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archiviazione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termina archivio</td>
<td>-</td>
<td>0</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicizza file d'archivio</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avvio archivio</td>
<td>-</td>
<td>0</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esporta archivio</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mostra archivi attivi</td>
<td>-</td>
<td>0</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestione user</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifica utente</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Login con dialogo</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Login senza password</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esegui logout</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifica password</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immagini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifica colore sorgente ALC</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio immagine con variabile</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiudi immagine</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immagine indietro</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spostare il centro dell’immagine</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio immagine</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focus: esegui funzione elemento</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attiva focus sul modello</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imposta focus</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elimina focus dal modello</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualizza menù</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assegna monitor</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profili Runtime</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiudi modello</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valore impostabile predefinito per</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immagine Keyboard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualizza finestra di controllo</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localizzazione guasti nelle reti elettriche</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riconosci guasto messa a terra</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termina ricerca messa a terra</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avviare la ricerca di guasto a terra</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riconoscimento breve messaggio</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salva coda d’attesa corrente</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sopprimi Gruppi/Classi/Aree/Strutture</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invia messaggio</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attiva invio messaggio</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disattiva invio messaggio</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autorizzazione di rete</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio ridondanza</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generatore Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Generator: stampa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Generator: esegui report</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Generator: esporta</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ricetta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manager Gruppi di Ricette</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ricetta Standard</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richiamo ricetta singola</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richiamo ricetta singola con selezione</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richiamo ricetta singola con selezione online</td>
<td>-</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Script</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esegui script</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Script con selezione online</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variabile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esportare dati</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leggi file dBase</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stampa dei valori attuali</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambio unità di misura</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attiva gestione HD</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disattiva gestione HD</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attiva/disattiva gestione HD</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imposta valore</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esegui comandi driver</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulazione per immagine di processo del driver acquisita dal Server Standby</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrivi data/ora nella variabile</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisisci ora dalla variabile</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apri Editor PCE</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apri Editor-VBA...</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanciare Macro-VBA</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBA-Visualizza dialogo Macro</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apri Editor VSTA</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanciare Macro-VSTA</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSTA-Visualizza il dialogo delle Macro</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esegui file audio</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operazioni file</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esegui file audio continuo</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termina file audio continuo</td>
<td>+</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porta sullo sfondo</td>
<td>-</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
14.8 Message Control

Il Message Control viene eseguito sul server primario.

Il server primario sincronizza i dati con il Server-Standby.

14.9 Interfacce di programmazione

VBA E VSTA

Di default, il codice in VBA o VSTA viene sempre eseguito localmente, sul sistema su cui viene avviato, oppure dove si verificano eventi.

Il luogo di esecuzione, però, può essere sempre definito in modo differente eseguendo il codice con una funzione (A pagina: 155).

PCE

In rete, il PCE viene eseguito sempre sul server. Nel caso di progetti standalone, sul computer standalone.
14.10 Lista incrociata

Si tiene anche conto dell’uso di variabili nella rete ponderata. Il nome proprietà del luogo di utilizzo è dichiarato come nome elemento. Questo è o "Variabile d'evento" o "Valutazioni".

Info
Ulteriori informazioni si trovano nella parte della guida dedicata alla Lista incrociata.

14.11 Generatore Report & Report Viewer

EDITOR

Quando il file viene modificato nell’Editor di zenon, trasferito e caricato sul server primario, viene inoltrato automaticamente agli altri computer in rete.

RUNTIME

Se il file viene modificato a Runtime, le modifiche vengono salvate solo temporaneamente e sostituite al successivo reload o al riavvio del Runtime.
14.12 Ricetta

L’esecuzione di ricette è differente a seconda che si tratti di ricette standard o RGM.

RICETTE STANDARD

Le ricette standard vengono gestite sul server primario e sul Server-standby.

Se un utente vuole modificare una ricetta standard a Runtime, il client richiede al server primario la lista completa delle ricette. Quando si effettua la modifica, la lista delle ricette viene rimandata al server primario.

Info

Questa lista non è identica al file rezepturen.cmp.

Se una ricetta viene modificata ed eseguita a Runtime sul client, viene eseguita con i nuovi valori. Quando si chiude la ricetta standard, il sistema offre la possibilità di salvare le modifiche.

MANAGER GRUPPI DI RICETTE

Quando l’immagine "Manager gruppi ricette" viene caricata sul client, viene richiesta una lista di tutti i nomi ricetta dal server primario. Non appena viene selezionata una ricetta, questa viene caricata dal server primario.

14.13 Sequenze di comando

Il modulo Sequenze di comando funziona in rete secondo il seguente principio:

- Le sequenze di comando possono essere configurate sia sul client, che sul Server o sul Server-standby.
- Le sequenze di comando configurate vengono gestite sul Server primario e inoltrate ai client.
- Le sequenze di comando possono essere amministrate sia sul client, che sul Server.
- Le sequenze di comando vengono eseguite sul Server primario.
- Quando si verifica un cambio di ridondanza, le sequenze di comando in esecuzione vengono terminate.
 Possono essere riavviate manualmente sul Server primario.
CAMBIO DI RUOLI FRA SERVER 1 E SERVER 2

- Il cambio di ridondanza viene ritardato finché tutte le sequenze di comando attive non sono state portate a termine.
- Durante un cambio di ridondanza viene bloccato lo start di sequenze di comando. I pulsanti sul client sono visualizzati in grigio (disabilitati).
 - Questo cambio di ridondanza può essere progettato su una
 rete ponderata.
 - In una rete dominante oppure in una rete non dominante, il cambio di ridondanza viene
 eseguito quando il Server primario smette di funzionare.
- E' possibile riavviare l'esecuzione di sequenze di comando solo dopo che il cambio è stato
 portato a termine, oppure se il cambio stesso è stato cancellato.
 In questo caso viene scritto un inserimento nella CEL.
- Messaggi CEL vengono scritti per gli eventi seguenti:
 - Start di una sequenza di comando è bloccato sul server.
 - Se una sequenza di comando deve essere avviata in una rete dominante sul Server 2 .
 - La sequenza di comando non può essere avviata a causa di un cambio di ridondanza in corso
 - Nota: non viene creato un messaggio CEL, invece, se viene avviata una sequenza di
 comando errata.

INSERIMENTO NEI FILE DI LOG.

<table>
<thead>
<tr>
<th>Inserimento</th>
<th>Livello</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>The sequence (mrid:<id1>, crid:<id2>)<name> could not be started, because a redundancy switch is pending.</td>
<td>ERRORES</td>
<td>La sequenza di comando non può essere avviata a causa di un cambio di ridondanza in corso.</td>
</tr>
</tbody>
</table>

ECCEZIONE: DUE SERVER NELLA RETE.

Se, quando si ha un cambio di Server primario, ci sono ancora sequenze di comando in esecuzione sul
“nuovo” Server-Standby, queste vengono interrotte sullo Standby. Questo può accadere solo se i due
server (per es. a causa di un errore di rete) non erano più collegati, e adesso sono di nuovo connessi. In
questo caso, la modifica alla sequenza di comando non verrà applicata sul server primario.

Questo significa che, se c’è connessione e sequenze di comando nel frattempo cancellate sullo Standby
sono state già aperte sul server primario, queste verranno considerate come ancora in esecuzione.
Potranno essere riavviate solo dopo essere state terminate sul Server 1 e sul Server 2.
NESSUNA CONNESSIONE FRA SERVER E STANDBY

Se si apre l’immagine delle sequenze di comando sul client quando né Server 1 né Server 2 sono raggiungibili, l’Editor delle sequenze di comando non è disponibile sul client. Verrà visualizzato vuoto. Nel Runtime di zenon verrà visualizzato, invece dell’immagine, un messaggio di errore.

FINESTRA DI DIALOGO DI ERRORE

Se una sequenza di comando non può essere avviata, viene visualizzata la seguente finestra di dialogo di errore:
14.14 Script

Gli script combinano più funzioni. La postazione di esecuzione dipende dalle impostazioni della funzione Esegui script. Questa impostazione sovrascrive quella delle singole funzioni.

L’esecuzione di script in rete viene gestita da script predefiniti.

<table>
<thead>
<tr>
<th>Script</th>
<th>Descrizione</th>
<th>Postazione di esecuzione</th>
</tr>
</thead>
</table>
| AUTOSTART | Lo script viene eseguito automaticamente all’avvio del Runtime, prima del caricamento della schermata di partenza, se il progetto è quello di partenza del Runtime. Non viene eseguito quando vengono lanciati dei progetti subordinati. | ▶ Progetto di rete: Server primario
▶ Progetto di rete: Server primario |
| AUTOEND | Lo script viene eseguito automaticamente alla chiusura del Runtime se il progetto è quello di partenza del Runtime. Non viene eseguito quando vengono chiusi dei progetti subordinati. | ▶ Progetto di rete: Server primario
▶ Progetto di rete: Server primario |
| AUTOSTART_CLIENT | Lo script viene eseguito automaticamente su un client all’avvio del Runtime, prima del caricamento della schermata di partenza, se il progetto è quello di partenza del Runtime. Non viene eseguito quando vengono lanciati dei progetti subordinati. | Progetto standalone: Computer attivo |
| AUTOEND_CLIENT | Lo script viene eseguito automaticamente su un client alla chiusura del Runtime se il progetto è quello di partenza del Runtime. Non viene eseguito quando vengono chiusi dei progetti subordinati. | Progetto standalone: Computer attivo |
| AUTOSTART_SRVPRJ | Lo script viene eseguito automaticamente all’avvio del Runtime di un progetto qualsiasi sul server prioritario, prima del caricamento della schermata di partenza. | Progetto di rete: Server primario |
| AUTOEND_SRVPRJ | Lo script viene eseguito automaticamente alla chiusura del Runtime di un progetto qualsiasi sul server primario. | Progetto di rete: Server primario |

14.15 Elenco contestuale

Quando si usa una Lista contestuale in un progetto di rete, il salvataggio viene eseguito sul server. I client vengono sincronizzati automaticamente.

Se una lista viene modificata contemporaneamente su diversi client, il server riprende la versione salvata per ultima e la inoltra a tutti i client.

Se il client perde la connessione con il server, la Lista contestuale viene vuotata sul client e gli elementi d’immagine che servono alla modifica vengono visualizzati in color grigio (disabilitati). Gli inserimenti
Comportamento dei moduli di zenon in rete.

della lista di informazioni allarmi collegati vengono visualizzati con il testo <Causa d’allarme non esistente>.
Non appena viene ristabilita la connessione con il server, la Lista contestuale viene visualizzata e gli elementi d’immagine che servono alla modifica tornano ad essere disponibili all’uso.

14.16 Driver nella rete di zenon

Nella rete di zenon, il server primario comunica di norma via driver con il PLC. Le richieste del client vengono inoltrate tramite il server primario. Quest’ultimo acquisisce le informazioni dal PLC e le invia al client. I valori limite vengono monitorati dal server primario.

DRIVER

I driver vengono eseguiti sul server primario e sul Server- Standby.

Eccezione: il driver matematico viene eseguito solo sul server primario del processo.

14.16.1 Driver per variabili interne

Per le variabili interne, in zenon si può definire per ogni variabile se il suo valore è solo locale (sul calcolatore), oppure lo stesso nell’intera rete.

Info

Le variabili del tipo di oggetto del driver variabili interne sono disponibili solamente per il driver per variabili interne (INTERN).

Per configurare il calcolo di variabili interne:

1. Passare al nodo Variabili Interne delle proprietà delle variabili interne.

2. Definite la postazione di esecuzione usando la proprietà Funzionamento:
 Questa proprietà può essere definita in modo differente per ogni singola variabile. Anche gli array sono supportati.
 a) Locale: nei progetti di rete, la variabile interna viene gestita e analizzata localmente, cioè anche sul Server-Standby e sui client. I valori non vengono sincronizzati con gli altri computer della rete.
 b) Rete: nei progetti di rete, la variabile interna viene analizzata e gestita sul server primario. Ha lo stesso valore sul server primario e su tutti client.
14.16.2 Driver - Valori limite e matrici di reazione.

In linea di principio, i valori limite e le matrici di reazione vengono monitorati sul server primario (dove viene gestita anche la AML). Per le variabili interne locali vale anche quanto segue:

- I valori limite e le matrici di reazione vengono monitorati localmente su tutti i computer (server primario, Server-Standby e client).
- Le funzioni di valore limite collegate vengono eseguite solo dove il valore limite della variabile interna locale è stato violato.
- Le violazioni di valore limite di queste variabili sul Server-Standby oppure sul client non sono un allarme.

14.16.3 Driver - Ritardo del cambio di ruoli in caso di cambio di ridondanza.

Quando un server configurato viene avviato o riavviato, è possibile che il passaggio al ruolo di server primario venga ritardato da un driver. Questo garantisce che il cambio dei ruoli avvenga solamente quando tutte le variabili di processo hanno un valore valido.

Il ritardo del cambio di ruoli è supportato solamente da pochi driver, come, per es., il Siemens AK-Treiber.

Per verificare se questo meccanismo è supportato no, consultare la documentazione del driver.
MESSAGGI NEI LOG

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Livello</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy Switch confirmation requested for project <Nome progetto> module:VAR sequenceNo:<SequenceNo></td>
<td>Debug</td>
<td>Richiesta conferma che può essere eseguito il cambio di server primario</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Nome progetto</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Il nome del progetto.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SequenceNo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Numero progressivo per l'assegnazione di request e response.</td>
</tr>
<tr>
<td>Redundancy Switch confirmed for project <Nome progetto> module:VAR sequenceNo:<SequenceNo></td>
<td>Debug</td>
<td>Conferma che può essere eseguito il cambio di server primario</td>
</tr>
<tr>
<td>Redundancy Switch delayed for project <Nome progetto> module:VAR sequence id:<SequenceNo></td>
<td>Debug</td>
<td>Ritardo del cambio di ruoli server attivato.</td>
</tr>
<tr>
<td>Sample driver gave startup okay</td>
<td>Debug</td>
<td>Tempo di ritardo scaduto sul driver.</td>
</tr>
<tr>
<td>me:<Transport class> mod:<NetzwerkModuleId>({Network module name}) msg:<network module command> SeqId:<SequenceId> dest:<Targetcomputer> prj:<projectname></td>
<td>Debug</td>
<td>Inserimento nei LOG quando è necessaria una conferma fra diversi computer.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Transport class: Nome classe per il trasporto del comando. Varia a seconda del modulo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Network module ID: ID del modulo di rete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Network module name: Nome del modulo di rete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- SequenceId: Numero progressivo usato per assegnare request e response.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Target computer: Computer a cui sono trasferiti i dati. Optional. S indica il server attivo.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Project name: Nome del progetto per cui viene eseguito il trasporto.</td>
</tr>
</tbody>
</table>
14.17 zenon Web Client nella rete ridondante

Con una configurazione ridondante della rete di zenon, la distribuzione dei ruoli di server primario e Server-Standby dipende dal Tipo di ridondanza impostato. È possibile che i ruoli svolti dai computer configurati nell’Editor come Server 1 e Server 2 cambi a Runtime, in modalità che dipendono dalla configurazione del Tipo di ridondanza, e dall’analisi corrente (nel caso sia stata impostata la modalità Tipo di ridondanza ponderata).

Si raccomanda, perciò, di configurare tutti e due i server per lo zenon Web Server. Per farlo, modificare nel file di configurazione global_vars.js la riga con l’inserimento RUNTIMESERVER= e inserire qui entrambi i computer.

La successione dovrebbe corrispondere a quella della progettazione nell’Editor di zenon:

I dettagli relativi alla configurazione si trovano nel capitolo Configurazione del global_vars.js.

CONFIGURAZIONE SERVER MODIFICATA

Se il nome server configurato nell’Editor non corrisponde a quello impostato nel file global_vars.js, lo zenon Web Client non si avvia.

Se la configurazione del server viene modificata in zenon per un sistema in esecuzione, nello zenon Web Client verrà visualizzata la finestra di dialogo "Il Runtime è occupato".

Dopo una sincronizzazione di progetto, verranno visualizzate in un’altra finestra di dialogo la configurazione attiva al momento e quella configurata. In questo caso, la finestra browser deve essere chiusa dall’utente e lo zenon Web Client deve essere riavviato.

⚠️Attenzione

Se si cambia la configurazione di Server 1 e Server 2 nell’Editor di zenon, anche il file global_vars.js deve essere modificato in modo corrispondente.

Ulteriori informazioni sull’argomento si trovano nella parte della guida dedicata allo zenon Webserver nel capitolo Configurazione di global_vars.js.
14.18 Temporizzatori

I temporizzatori vengono eseguiti sul server primario. La funzione attivata viene eseguita sul sistema che nelle impostazioni è stato impostato per l'esecuzione della funzione.

14.19 Attribuzioni

Le attribuzioni vengono eseguite sempre solo sul server primario.

⚠️ Attenzione

Questo è di particolare importanza per le variabili interne locali. Le attribuzioni non verranno eseguite sul Server-Standby o sui client!

15. Messaggi di rete del driver di sistema

Su questo tema sono disponibili le seguenti variabili di sistema:
<table>
<thead>
<tr>
<th>Nome</th>
<th>Tipo di dato</th>
<th>Commento</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Rete] Server primario attuale</td>
<td>STRING</td>
<td>Nome computer del server primario attuale. Se il nome viene acquisito dal file host, sarà il nome che vi è stato inserito. Con il DNS, questo nome è il nome di dominio completo (Fully Qualified Domain Name).
Note: se la rete è disattivata, la variabile invia lo stato INVALID. La variabile [Rete] Server Standby attuale, invece, rimane vuota.</td>
</tr>
<tr>
<td>[Rete] Server Standby attuale</td>
<td>STRING</td>
<td>Nome computer del server che attualmente non è quello primario. Se il nome viene acquisito dal file host, sarà il nome che vi è stato inserito. Con il DNS, questo nome è il nome di dominio completo (Fully Qualified Domain Name).</td>
</tr>
<tr>
<td>[Rete] Quantità clienti collegati</td>
<td>UDINT</td>
<td>Restituisce il numero dei client attualmente connessi al server. Questo numero include anche il Server-Standby, se presente.</td>
</tr>
<tr>
<td>[Rete] Autorizzazione negata</td>
<td>BOOL</td>
<td>Mostra se un’autorizzazione operativa richiesta in rete viene rifiutata. In questo caso, il valore della variabile viene modificato solo per poco tempo, per poi essere resettato sullo stato originario.
- 0 = richiesta di autorizzazione operativa accettata
- 1 = richiesta di autorizzazione operativa negata</td>
</tr>
<tr>
<td>[Rete] Autorizzazione rete: disponibile su questo PC</td>
<td>BOOL</td>
<td>Mostra se sul calcolatore locale è disponibile l’autorizzazione operativa per il progetto attuale.
- 0 = No
- 1 = Si</td>
</tr>
<tr>
<td>[Rete] Autorizzazione di rete: Computer in possesso</td>
<td>STRING</td>
<td>Mostra il nome del calcolatore che possiede l’autorizzazione operativa per il progetto attualmente in esecuzione.</td>
</tr>
<tr>
<td>[Rete] Risultato valutazione Server 1</td>
<td>UDINT</td>
<td>Quando si effettuano dei cambiamenti ad una variabile della matrice di analisi, dopo il calcolo del nuovo esito dell’analisi, questo valore viene scritto sulla variabile di sistema corrispondente per Server 1 o Server 2. I valori si sincronizzano reciprocamente (Server <-> Standby), in modo tale che su entrambi i server ci sia sempre il valore attuale. Dopo che un terminale ha smesso di funzionare, il valore rimane ancora sulla relativa variabile e la sincronizzazione avviene solo dopo una nuova connessione.
Note: ulteriori informazioni sull’analisi si trovano nella parte della guida dedicata alla Rete (A pagina: 7), e più precisamente nel capitolo Configurazione dell’analisi della</td>
</tr>
</tbody>
</table>
Messaggi di rete del driver di sistema

| [Rete] Server primario <-> server standby in sincronizzazione dati | BOOL | Una variabile binaria che riceve per breve tempo il valore 1 se dal sistema viene eseguito un cambio di ridondanza fra server e Server-Standby.
 - 0 = nessuna sincronizzazione
 - 1 = sincronizzazione dati attiva |
| [Rete] Server primario fuori servizio | BOOL lokal | Indica che la connessione con il server primario è andata persa. A seconda della posizione del computer nella topologia di rete, questo significa:
 - Server dominante: nel periodo di tempo in cui questo non è ancora server primario, il valore passa a TRUE se la connessione con il server primario si è interrotta. Dopo la sincronizzazione sempre FALSE.
 - Server non dominante: passa a TRUE quando la connessione al server dominante (che era primario) si è interrotta. Ritorna a FALSE quando il Server-Standby è passato a svolgere il ruolo di server primario. VALUTAZIONE: preferibilmente tramite una matrice di reazione (REMA), visto che anche la gestione allarmi a questo punto passa da un calcolatore all’altro e viene ripresa dal SB. Anche il contenitore online non è adatto allo scopo visto che le variabili vengono inizializzate di nuovo nel caso di un cambio di ridondanza.
 - Client: Passa a TRUE quando la connessione al server primario si è interrotta. Ritorna a FALSE quando il client si connette al computer SB che ha assunto adesso il |
| | ruolo di server primario. |
[Rete] Server primario terminato

BOOL

Indica che il server primario è stato terminato in modo corretto. Il valore passa a TRUE quando il server primario è stato terminato in modo regolare. È FALSE quando c'è un server primario in rete.

A seconda della posizione del computer nella topologia di rete, questo significa:

- **Server dominante:** Nel periodo di tempo in cui questo non è ancora server primario, il valore passa a TRUE quando il server primario si è fermato.
- **Server non dominante:** Passa a TRUE quando il server dominante (che è primario), si è fermato. Ritorna a FALSE quando lo SB è passato a svolgere il ruolo di server primario.
- **VALUTAZIONE:** preferibilmente tramite una matrice di reazione (REMA), visto che anche la gestione allarmi a questo punto passa da un calcolatore all’altro e viene ripresa dal SB. Anche il contenitore online non è adatto allo scopo visto che le variabili vengono inizializzate di nuovo nel caso di un cambio di ridondanza.
- **Client:** passa a TRUE quando il server dominante si è fermato. Ritorna a FALSE quando il client si connette al computer SB che ha assunto adesso il ruolo di server primario. È TRUE anche nel periodo di tempo in cui il server non dominante primario torna ad essere server non primario.

[Rete] Stand-alone/Server primario/Server Standby/Client

DINT

Mostra di che tipo è il computer locale nella rete.

- \(-1 = \) Standalone
- \(0 = \) Client
- \(1 = \) server primario
- \(2 = \) Server Standby

[Rete] Server Standby fuori servizio

BOOL

Passa a TRUE quando la connessione al server attualmente non primario è stata interrotta in modo inaspettato. Se la connessione esiste e funziona, il valore è FALSE.

A seconda della posizione del computer nella topologia di rete, questo significa:

- **Server dominante:** la variabile si comporta nel modo descritto solo a partire dal momento in cui il Server-Standby diventa server primario.
- **Server non dominante:** se, al momento della sincronizzazione file con il server dominante, ma non primario, la connessione si interrompe, il valore passa a
<table>
<thead>
<tr>
<th>TRUE. Sempre FALSE se non server primario.</th>
</tr>
</thead>
<tbody>
<tr>
<td>› Client: Come server primario</td>
</tr>
</tbody>
</table>
[Rete] Server Standby terminato

<table>
<thead>
<tr>
<th>BOOL</th>
</tr>
</thead>
</table>
| È TRUE sul server primario se il server non primario è stato terminato in modo corretto e non c'è più una connessione. Ritorna a FALSE quando il server non primario si è registrato sul server primario.
| A seconda della posizione del computer nella topologia di rete, questo significa:
| - Server dominante: la variabile si comporta come descritto solo a partire dal momento in cui il Server-Standby diventa server primario.
| - Server non dominante: Se, al momento della sincronizzazione file con il server dominante, non è stato terminato, il valore passa a TRUE. Sempre FALSE se non server primario.
| - Client: Come server primario |

[Rete] Server Standby attivato

<table>
<thead>
<tr>
<th>BOOL</th>
</tr>
</thead>
</table>
| È TRUE se il server non primario si è registrato sul server primario, la sincronizzazione file è stata eseguita e la connessione fra i computer è attiva.
| A seconda della posizione del computer nella topologia di rete, questo significa:
| - Server dominante: la variabile si comporta come descritto solo a partire dal momento in cui il Server-Standby diventa server primario.
| - Server non dominante: diventa TRUE quando si avvia il server dominante, ma non non primario Passa a FALSE quando il computer diventa server primario.
| - Client: Come server primario |

[Rete] Timeout [ms]

| UDINT |
| Mostra il tempo di timeout in millisecondi configurato per la rete di zenon. |

[Rete] Imposta da Server primario a Server Standby

| BOOL |
| Una variabile binaria che riceve il valore 1 quando, durante un cambio ridondanza, il server diventa Server-Standby.
| 0 = il server inserito è disponibile in rete nel ruolo di server.
| 1 = il server inserito è disponibile in rete nel ruolo di Server-Standby. |

[Rete] Imposta da Server Standby a Server primario

| BOOL |
| Una variabile binaria che riceve il valore 1 quando, durante un cambio ridondanza il Server-Standby diventa server.
| 0 = il Server-Standby inserito è disponibile in rete nel ruolo di Server-Standby.
| 1 = il Server-Standby inserito è disponibile in rete nel ruolo di server. |

La visualizzazione dello stato della connessione a Runtime è configurata tramite la proprietà Visualizza stato della variabile dell’elemento d’immagine.

Questa proprietà è attivata di default per tutti gli elementi d’immagine di zenon. Questo elimina la necessità di ulteriori fasi di progettazione. Lo stato della rete viene visualizzato con un punto blu nel Runtime di zenon se la connessione è disturbata.

VISUALIZZAZIONE IN CASO DI MALFUNZIONAMENTO ("PUNTO BLU")

- La perdita della connessione di un client con il server viene visualizzata a Runtime sul client:
 Tutte le variabili che ottengono valori tramite la rete sono contrassegnate con un punto blu a Runtime quando la comunicazione interna è interrotta.
 - Questo vale anche per le variabili del driver interno che vengono rifornite di dati tramite server:
 Esempi:
 - Variabile del driver interno, per la cui proprietà Funzionamento è configurato il valore Netzwerk. Questa proprietà si trova nel gruppo Variabili Interne delle proprietà della variabile.
 Variabile del driver di sistema [Rete] Server Standby attuale
 - Una variabile che deve essere richiesta dal server sul client viene contrassegnata immediatamente con un punto blu.
 - I valori di SB vengono inviati dal Server Standby e visualizzati con un punto blu sul server primario del processo in caso di mancato funzionamento del Server di Standby.
 - Questo punto blu scompare non appena la sorgente del punto di dati viene collegata al server primario del processo. Questo significa che al client vengono forniti dati validi. Una sorgente può essere sia il Server Standby che il server primario del processo.
 - I punti blu vengono visualizzati quando:
 - Il server primario del processo non dispone di nessuna comunicazione con il Server Standby e la proprietà della variabile Richiedere solo da Server standby è attivata. Questa proprietà si trova nel gruppo Indirizzamento delle proprietà della variabile.
 - Il client non è connesso con nessuno dei due server. In questo caso, la comunicazione con il Server 1 E con il Server 2 è disturbata.
 - In caso di un cambio di ridondanza, durante il processo di cambio di ruolo server. Questo periodo è molto breve.
 Nota: questo non causa la perdita di dati.