Manuale di zenon
Simulazione driver

v.7.60
©2017 Ing. Punzenberger COPA-DATA GmbH

Tutti i diritti riservati.

La distribuzione e la copia di questo documento - indifferentemente dal metodo usato - può essere consentita esclusivamente con permesso scritto della ditta COPA-DATA. I dati tecnici servono solo alla descrizione del prodotto e non rappresentano in alcun modo caratteristiche garantite in senso legale. Con riserva di modifiche - anche di tipo tecnico.
Indice

1. Benvenuti nell’help di COPA-DATA ... 5

2. Simulazione driver ... 5

3. Simulazione statica ... 6

4. Simulazione – conta ... 6

5. Simulazione - programmata ... 7
 5.1 Editor ... 8
 5.1.1 Crea progetto .. 8
 5.1.2 Elimina progetto .. 11
 5.1.3 Engineering distribuito ... 12
 5.1.4 Cambia driver ... 13
 5.1.5 XML-Export/Import .. 13
 5.2 Configurazione driver .. 14
 5.2.1 Stato Variabile driver ... 14
 5.2.2 Sincronizzazione ciclica ... 16
 5.3 zenon Logic Workbench ... 17
 5.4 Runtime ... 18
 5.4.1 Funzionalità .. 18
 5.4.2 Array e simulazione .. 20
 5.4.3 File Runtime ... 20
 5.4.4 Scambio dati ... 21
 5.4.5 Formato dati .. 23
 5.4.6 Ridondanza ... 23
 5.4.7 Stato .. 24
 5.4.8 Start/Stop .. 26
 5.4.9 Comandi driver .. 27
 5.4.10 Assegnazione variabili .. 28
 5.4.11 Data e ora ... 28
 5.5 Indicazioni sulle variabili in progetti di simulazione 29
 5.6 Messaggi d’errore ... 30
1. Benvenuti nell'help di COPA-DATA

VIDEO TUTORIAL DI ZENON

Nel nostro canale YouTube (https://www.copadata.com/tutorial_menu) si trovano esempi pratici di progettazione con zenon. I tutorial sono raggruppati per tema e forniscono una panoramica di come si lavora con i diversi moduli di zenon. Tutti i tutorial sono disponibili in lingua inglese.

GUIDA GENERALE

Se non avete trovato le informazioni che cercavate o se avete dei consigli relativi al completamento di questo capitolo dell'help, potete scrivere una E-Mail all'indirizzo documentation@copadata.com.

SUPPORTO ALLA PROGETTAZIONE

Se avete domande che riguardano progetti concreti, potete rivolgervi via E-Mail all'indirizzo support@copadata.com.

LICENZE E MODULI

Se avete bisogno di nuovi moduli o licenze, potete rivolgervi ai nostri collaboratori all'indirizzo sales@copadata.com.

2. Simulazione driver

Se, al momento della progettazione, non è disponibile il processo di base, quest’ultimo può essere simulato e poi testato. A tal scopo, sono a disposizione tre modalità:

- Simulazione - statica (A pagina: 6): valori constanti simulati dal driver.
- Simulazione - conta (A pagina: 6): i valori simulati dal driver vengono calcolati.
Simulazione statica

- Simulazione - programmata (A pagina: 7): i valori vengono calcolati mediante un progetto di simulazione con zenon Logic

⚠️ Attenzione

Se il driver viene fermato nella modalità Simulazione - conta, si ferma solamente il procedimento di conta. Le variabili non passano a disturbato. In tutte le altre modalità di funzionamento, invece, il driver viene interrotto per davvero.

Nota: Simulazione - programmata non viene supportata dai driver per:
- Variabili interne
- Variabili matematiche
- Variabili di simulazione
- Variabili di sistema

💡 Info

Le variabili di zenon che rappresentano, IO variabili zenon Logic, non sono disponibili nel progetto nello stato Simulazione driver - programmata.

Informazioni sulla licenza

Parte della licenza standard per Editor e Runtime

3. Simulazione statica

Nel caso di simulazione statica, non viene instaurata una comunicazione con il controller; i valori vengono simulati dal driver. In questa modalità, i valori rimangono costanti. I valori possono essere modificati dal runtime oppure dall’utente. Al riavvio del runtime con Simulazione - statica, tuttavia, questi valori non verranno salvati e andranno dunque perduti.

4. Simulazione – conta

Nel caso di simulazione - conta, non viene instaurata una comunicazione con il controller; i valori vengono simulati dal driver. In questa modalità il driver incrementa i valori automaticamente all’interno
di un intervallo valori cominciando da 0. Quando si raggiunge il valore massimo, il procedimento di conta riprende da 0.

Info

Se si hanno valori di partenza negativi, il procedimento di conta inizia solamente da 0.

INT usa per contare il valore massimo di USINT.

Attenzione

Se il driver viene fermato nella modalità Simulazione - conta, si ferma solamente il procedimento di conta. Le variabili non passano a disturbato. In tutte le altre modalità di funzionamento, invece, il driver viene interrotto per davvero.

5. Simulazione - programmata

Nel caso di simulazione programmata, non viene instaurata una comunicazione con il controller; i valori vengono calcolati da un progetto di simulazione liberamente programmabile. Il progetto di simulazione viene creato con l’aiuto del workbench di zenon Logic ed eseguito nel runtime di zenon Logic. Ciò consente di modificare lo stato e il time stamp di variabili sul driver. I comandi di scrittura su variabili vengono trasmessi alla simulazione tramite zenon; il server ridondante e il server di standby vengono sincronizzati. In tal modo è possibile simulare anche procedimenti complessi.

Per avviare il programma di simulazione selezionate nella Configurazione driver (A pagina: 14) la modalità Simulazione - programmata.

Info

Windows CE

La simulazione-programmata non è disponibile sotto Windows CE.
5.1 Editor

5.1.1 Crea progetto

Per poter creare un progetto per la simulazione - programmata, si deve procedere come segue:

- si deve selezionare un solo driver di processo
- il nome progetto deve essere valido.

⚠️ **Attenzione**

Simulazione - programmata non viene supportata dai driver per:

- Variabili interne
- Variabili matematiche
- Variabili di simulazione
- Variabili di sistema

Per creare un progetto di simulazione:

- cliccate all’interno del gruppo Progetto di simulazione del driver, in corrispondenza della proprietà Modifica su Clicca qui →
- viene creato un nuovo progetto zenon Logic
- Nome e numero di porta per Porta eventi e Porta standard vengono attribuiti automaticamente; potete modificarli a piacere.
- viene aperto il workbench di zenon Logic

Il workbench del progetto di simulazione viene chiuso automaticamente se:

- si chiude l’editor di zenon
- si cancella un driver il cui progetto di simulazione viene redatto al momento nel workbench
- il progetto di simulazione per il driver viene chiuso usando la proprietà Elimina
- il progetto di simulazione viene rinominato
Info

Numeri di porta: Quando viene generato il progetto di simulazione, gli viene assegnato automaticamente un numero di porta univoco. Un numero di porta assegnato automaticamente è univoco solo per il relativo progetto. Nei progetti multi-gerarchici, ci si deve assicurare che un numero di porta sia usato una sola volta in tutti i progetti eseguiti nel Runtime. Se un numero di porta viene usato più di una volta, infatti, si possono verificare degli errori di comunicazione con il Workbench/Runtime di zenon Logic.

I numeri di porta possono essere modificati ed adeguati manualmente. Un numero di porta deve soddisfare le seguenti condizioni:

- Deve essere libero nel progetto.
- Deve essere univoco per tutti i progetti che sono eseguiti nel Runtime.
- Deve essere disponibile sul calcolatore su cui è attivo il driver.

Numeri di porta consentiti:

- Minimo: 6000 (in caso di assegnazione automatica, si consiglia adeguamento manuale)
- Massimo: 6999 (in caso di assegnazione automatica, si consiglia adeguamento manuale)

LUOGO IN CUI SALVARE IL PROGETTO

Un progetto zenon Logic contiene molti file e cartelle. Per facilitare il lavoro, soprattutto nel caso di una progettazione distribuita, tutti i file vengono salvati in forma compatta nel file `Simul_<Treiber-ID>.zip` che si trova nella cartella `<Sql Projekt Pfad>\FILES\zenon\custom\drivers`. Nell’editor, questo file si trova con quelli del driver. Al momento dell’avvio del workbench di zenon Logic, i file vengono decompressi automaticamente e, al momento della chiusura del workbench, vengono di nuovo compressi.

CREA VARIABILI

Quando si creano delle variabili in un progetto di simulazione, è importante procedere rispettando la seguente successione di passaggi:

1. prima di tutto create la variabile
2. selezionate poi il tipo di dato valido nel workbench di zenon Logic
3. solo dopo attivate la proprietà embed symbol

Background: le variabili vengono create di default con il tipo di oggetto driver PLC marker. Questo tipo di oggetto non supporta per tutti i driver tutti i tipi di dato. Se una variabile viene copiata nel workbench di zenon Logic con la proprietà embed symbol attiva, quest’ultima dovrà essere disattivata per poter poi procedere al cambiamento del tipo di dato. In tal modo, la variabile viene cancellata in zenon.
Segnalazione di errore "Can not create variable"

Non è possibile creare una variabile nell’oggetto di simulazione se il driver non ha nessun tipo di oggetto driver (escluso Variabile del driver) che supporta questo tipo di dato.

Quando si attiva embed symbol, verrà poi visualizzata la segnalazione di errore “can not create variable”.

TIPO DI DATO STRUTTURATO

Quando si creano delle variabili con un tipo dato strutturato, avviene quanto segue:

- le variabili vengono create, se possibile, con il tipo di oggetto driver PLC marker.
- il sistema prova tutti i tipi di oggetto driver (fatta eccezione per Variabile del driver) finché non ne trova uno utilizzabile per tutti gli elementi.
- se non è disponibile nessun tipo di oggetto driver adeguato, avviene quanto segue:
 - non viene creata nessuna variabile nel caso di non-variabili struttura
 - nel caso delle variabili struttura, si usa il tipo di oggetto driver PLC marker.

ESEMPIO:

un tipo dato strutturato contiene elementi del tipo UINT e STRING. Viene creata una variabile per il driver S7TCP e embed symbol viene attivata.

- La variabile non viene creata in PLC marker, ma come Ext. Datablock, in cui sono presenti tutti gli elementi di struttura.
- Viene aggiunto un nuovo tipo LINT; esso non viene supportato da Ext. Datablock.
- Quando si crea una nuova variabile, essa viene impostata come tipo PLC marker. Può essere attivata solamente la prima variabile complessa (UINT). Nel caso della variabile strutturata esistente, il tipo di oggetto rimana Ext. Datablock e l’ultimo elemento di struttura (LINT) non può essere attivato.

COMPILAZIONE DEI FILE

Se un progetto di simulazione viene compilato nel workbench di zenon Logic, ciò comporta in zenon la creazione delle variabili e del file di programma nel runtime.
Nel compilare, nella cartella runtime \RT\FILES\zenon\custom\drivers viene generata una sottocartella con il nome del progetto di simulazione. In questa cartella viene poi depositato il file con il codice della simulazione in SIMULRT.COD.
Durante la compilazione, nella finestra di emissione viene visualizzata la seguente segnalazione:

SIMULRT.COD

E se si compila con C-Compiler, apparirà inoltre:

TSAPP.DLL

⚠️ **Attenzione**

Nel caso di Progetti multiutente (A pagina: 12), non si può creare nessun nuovo progetto di simulazione offline. Esso non può essere più cancellato.

5.1.2 Elimina progetto

Per cancellare un progetto di simulazione:

1. cliccate all’interno del gruppo **Progetto di simulazione del driver** in corrispondenza della proprietà **Elimina** sul pulsante su **Clicca qui >**
2. cliccate su ok quando il sistema Vi richiede di confermare a fine di sicurezza
3. il file ZIP contenente i file di progetto viene cancellato subito
4. il workbench di zenon Logic viene chiuso

Tenere presente quanto segue:

- la cartella Runtime per il progetto di simulazione, invece, viene conservata
- la funzione **Annulla** non è disponibile per questa azione,
- cliccando su **Modifica** si crea un nuovo progetto di simulazione
- nel caso di **Progetti multiutente (A pagina: 12):**
 - si deve configurare il driver su **Consenti modifiche** per consentire la cancellazione del programma di simulazione
 - il progetto non viene visualizzato su altri client come cancellato finché non è stato sincronizzato;
 - se si cerca di aprire un progetto cancellato prima della sincronizzazione (clic su **Modifica**), sarà creato un nuovo progetto di simulazione.
 - come nel caso di progetti standalone, la cancellazione mediante il comando **cancellare modifiche** è irreversibile.
Attenzione

Il progetto di simulazione viene rimosso già al momento della cancellazione dalla banca dati locale e da quella del server. Non sarà possibile annullare questa operazione!

Nota: Anche la cancellazione del file ZIP con i file del driver porta all’eliminazione del progetto di simulazione. Requisito il workbench di zenon Logic per questo driver non è aperto. Si sconsiglia di adottare questa procedura!

5.1.3 Engineering distribuito

Nel caso di progetti multiutente, tutte le funzionanti workbench zenon Logic appartenenti al progetto vengono chiuse per la simulazione driver in corrispondenza di:

- Riprendi modifiche per moduli, che per Permetti modifiche vengono completamente bloccati per altri utenti, come variabili, driver e tipi di dato.
- Cancella modifiche:
 - non vengono creati nuovi progetti sul server
 - le modifiche vanno perse nel programma di simulazione
 - i file driver non presenti nella banca dati del server vengono cancellati anche nelle banche dati locali
- Sincronizza:
 le modifiche realizzate localmente nel programma di simulazione vanno perdute.
- Attualizza la versione locale:
 le modifiche realizzate localmente nel programma di simulazione vanno perdute.

Attenzione

Lo stato del file ZIP del progetto di simulazione non deve essere in alcun modo modificato extra (, Permetti modifiche, Rifiuta modifiche Stato Multiuser), per salvare operazioni corrette Riprendi modifiche e Permetti modifiche del driver!

ELIMINA PROGETTO

Nel caso di Progetti multiutente

- si deve configurare il driver su Consenti modifiche per far sì che il programma di simulazione possa essere cancellato.
- il progetto non viene visualizzato su altri client come cancellato finché non è stato sincronizzato; se si cerca di aprire un progetto cancellato prima della sincronizzazione (clic su Modifica), sarò creato un nuovo progetto di simulazione.
come nel caso di progetti standalone, la cancellazione mediante il comando **cancellare modifiche** è irreversibile.

⚠️ **Attenzione**

Un progetto di simulazione con lo stato **rendere possibili le modifiche**, nella modalità **Offline** non può essere cancellato (A pagina: 11).

per questa ragione un progetto di simulazione generato in un **progetto multutente offline** non può essere più cancellato.

5.1.4 Cambia driver

Nel caso di cambiamento di driver in zenon vale quanto segue:

- Il progetto di simulazione rimane.
- Tuttavia, tutte le porte vengono settate su 0. Per ottenere numeri di porta funzionanti, aprite il progetto nell’Editor. Il sistema provvederà automaticamente a inserire nuovi numeri di porta. Questi possono essere anche assegnati manualmente.

⚠️ **Attenzione**

I driver che sono collegati ad un progetto zenon Logic tramite la soluzione integrata, non possono essere cambiati.

5.1.5 XML-Export/Import

Un progetto in modalità simulazione - programmata può essere esportato via XML. Non può essere importato però come nuovo progetto per un altro driver.

Workaround:

1. Esportate i programmi zenon Logic.
2. Importateli nel nuovo progetto per il nuovo driver.
3. Sostituite le variabili mediante Cerca e Sostituisce.
5.2 Configurazione driver.

Quando procedete alla configurazione del driver, sono a Vostra disposizione quattro modalità:

- Hardware
- Simulazione – conta
- Simulazione statica
- Simulazione - programmata

Selezionate la modalità Simulazione - programmata.

5.2.1 Stato Variabile driver

Lo stato del runtime di zenon Logic viene visualizzato nella variabile driver SimulRTState su Offset 60. La variabile è numerica e non può essere scritta. Il valore fornisce informazioni sullo stato del runtime:
<table>
<thead>
<tr>
<th>Bit</th>
<th>Significato</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>senza applicazione</td>
<td>Runtime non ha caricato nessun programma; il programma è stato bloccato, oppure non è caricato nel runtime.</td>
</tr>
<tr>
<td>30</td>
<td>non istanziato</td>
<td>Il runtime non è stato istanziato, per esempio perché non è stato possibile caricare DLL con il runtime, oppure perché non c’è abbastanza spazio di memoria, oppure perché DLL non è disponibile o lo è nella versione sbagliata.</td>
</tr>
<tr>
<td>18</td>
<td>p-code available</td>
<td>p-Code è disponibile insieme a codice compilato; è possibile passare dall’uno all’altro.</td>
</tr>
<tr>
<td>17</td>
<td>compiled code active</td>
<td>Il runtime è funzionante con code compilato (altrimenti: p-Code interpretato).</td>
</tr>
<tr>
<td>16</td>
<td>compiled code available</td>
<td>compiled code di C-Compiler è disponibile.</td>
</tr>
<tr>
<td>15</td>
<td>application is loaded</td>
<td>un’applicazione è presente, il runtime funziona.</td>
</tr>
<tr>
<td>14</td>
<td>cant start - missing handlers</td>
<td>Mancano alcune funzioni "C".</td>
</tr>
<tr>
<td>13</td>
<td>active breakpoints installed</td>
<td>È stato settato dal debugger almeno un breakpoint.</td>
</tr>
<tr>
<td>12</td>
<td>CT segment exists</td>
<td>L’applicazione è stata compilata con l’opzione "complex variables in separate segment".</td>
</tr>
<tr>
<td>11</td>
<td>Riservato</td>
<td>(Interno, solo per il runtime.)</td>
</tr>
<tr>
<td>10</td>
<td>sysinfo request is available</td>
<td>(Interno, solo per il runtime.)</td>
</tr>
<tr>
<td>9</td>
<td>freeze event production</td>
<td>Binding non trasmette nessun evento.</td>
</tr>
<tr>
<td>8</td>
<td>single cycle mode</td>
<td>(Interno, solo per il runtime e debugger)</td>
</tr>
<tr>
<td>7</td>
<td>Riservato</td>
<td>(Interno, solo per il runtime.)</td>
</tr>
<tr>
<td>6</td>
<td>locked variables</td>
<td>Per lomeno una variabile è bloccata.</td>
</tr>
<tr>
<td>5</td>
<td>trigo functions are in degrees</td>
<td>Le funzioni trigonometriche vengono indicate in gradi.</td>
</tr>
<tr>
<td>4</td>
<td>log message(s) in stack</td>
<td>(Interno, solo per il runtime.)</td>
</tr>
<tr>
<td>3</td>
<td>application stopped between 2 progs</td>
<td>Il runtime è stato bloccato nell’effettuazione dell’operazione di debugging nel mezzo di due passaggi.</td>
</tr>
<tr>
<td>2</td>
<td>application stopped on SFC breakpt</td>
<td>(Interno, solo per il runtime.)</td>
</tr>
<tr>
<td>1</td>
<td>application stopped on error</td>
<td>Il runtime viene bloccato per errore grave. Necessario un nuovo start.</td>
</tr>
<tr>
<td>0</td>
<td>application is running</td>
<td>TRUE = l’applicazione è nella modalità "run". FALSE = l’applicazione fa una pausa nella modalità "cycle to cycle".</td>
</tr>
</tbody>
</table>
5.2.2 Sincronizzazione ciclica

Le simulazioni funzionano in rete sul server e sul Server-Standby in modo autonomo. Al momento dello start del Server-Standby si verifica una sincronizzazione con il server, ma:

- se questa prima sincronizzazione viene rimandata in modo corrispondente alla scadenza pacchetti
- delle piccole differenze portano a crescenti divergenze nell’esecuzione.

Anche lo stato delle variabili simulate varia. Per limitare l’entità di queste differenze, sfruttate la funzione **Trasmetti Immagine di simulazione driver allo standby** per la sincronizzazione dell’immagine di simulazione:

- Creare una nuova funzione.
- selezionate **Trasmetti driver-immagine di simulazione allo standby**

- Si apre il dialogo per la selezione dei driver.

- nella lista sono indicati tutti i driver collegati al processo (escluso simulatore) disponibili (cliccate sulla cima della colonna per cambiare il criterio secondo il quale i driver sono ordinati nella lista).
- selezionate adesso quel driver che devono essere sincronizzati
- per ogni richiamo della funzione sul Server-Standby viene richiesta un’immagine dal server per il driver selezionato.

Mediante attivazione ciclica, possono essere ridotte al minimo le differenze nello stato di simulazione attuale. Adattate la griglia dell’esecuzione alla quantità dei dati da sincronizzare, visto che questa operazione significa un carico per rete e computer.

La **Esecuzione** della funzione è impostata in modo fisso a **Server Standby** e non può essere modificata. Essa si verifica solamente se:

- il calcolatore è il Server-Standby
- il server online è
- il progetto è un progetto di rete
sono stati selezionati driver per la sincronizzazione

PER MODIFICARE LA SELEZIONE DEL DRIVER

- cliccate nelle proprietà del driver sul gruppo **Generale** e sulla proprietà **Parametri**
- Si apre il dialogo per la selezione dei driver.

5.3 zenon Logic Workbench

La **Simulazione - programmata** viene programmata nel workbench zenon Logic, che collabora in modo stretto con l’Editor di zenon. Per la simulazione (a differenza della soluzione integrata) vengono scambiate fra gli editor solamente le variabili di un driver.

DEFINIZIONE DELLE VARIABILI DA SCAMBIARE

Al momento dell’avvio del workbench di zenon Logic, tutte le variabili del driver che non sono ancora esistenti in zenon Logic vengono impostate come variabili globali. Per queste ultime è sempre attiva automaticamente l’impostazione **Rendere simbolo indipendente**.

VISIBILITÀ

Se si definisce nel workbench una nuova variabile nell’area **globale** oppure **ritentiva**, essa è visibile solamente in zenon Logic. Per renderla visibile anche in zenon, deve essere attivata l’opzione **Rendere simboli indipendenti**. A partire da questo momento, la variabile viene attualizzata da entrambi gli editor.

Nel caso in cui si disattiva per la variabile l’opzione **Rendere simboli indipendenti**, la variabile viene cancellata nell’editor di zenon. Questo comportamento del sistema permette di definire in zenon Logic delle variabili **globali** e **ritentive**, che non sono visibili per zenon.

Per una variabile creato con il workbench di zenon Logic in zenon, il sistema prova l’assegnazione all’area **SPSMERKER**. Se però il zenon Driver (A pagina: 8) non supporta il tipo di dato configurato in essa, il sistema cerca la prima area dati che supporta questo tipo di dato. Se il sistema non trova nessun’area, la variabile non può essere impostata.

Una variabile è bloccata solamente se si ha un **Progetto multiutente** e quest’ultimo non possiede ancora lo stato **Abilitare le modifiche**.

IMPOSTAZIONI DI PROGETTO

Alcune impostazioni sotto **Progetto -> Parametri-progetto… -> Altre opzioni ** -> Estese in zenon Logic hanno influenza sulla funzionalità della simulazione.
<table>
<thead>
<tr>
<th>Impostazioni Estese</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime: Modalità di esecuzione</td>
<td>Consigli:</td>
</tr>
<tr>
<td></td>
<td>Modalità: con trigger</td>
</tr>
<tr>
<td></td>
<td>Tempo di ciclo: da 1/4 a 1/3 del tempo necessario all’attualizzazione del driver</td>
</tr>
<tr>
<td></td>
<td>Delle modifiche di valore troppo frequenti di variabili simulate portano a sottoporre il computer ad un carico elevato</td>
</tr>
<tr>
<td>Compiler/Opzioni: Rendere indipendenti simboli di tutte le variabili</td>
<td>Consigli: disattivare.</td>
</tr>
<tr>
<td></td>
<td>Attiva: i dati per una variabile vengono scambiati visto che l’assegnazione avviene nel runtime mediate i nomi simbolo.</td>
</tr>
<tr>
<td></td>
<td>Ma: le modifiche alla progettazione delle variabili non vengono attualizzate fra zenon e zenon Logic. non è più possibile l’online change.</td>
</tr>
<tr>
<td>Compiler/Opzioni: mantenere la scrittura in lettere maiuscole/minuscole dei simboli.</td>
<td>Senza conseguenza: nel runtime, i nomi variabili vengono sempre convertiti nella scrittura in lettere maiuscole.</td>
</tr>
<tr>
<td>Compiler/Opzioni: impostare bit di stato per variabili con profilo.</td>
<td>Attivo: Nel programma di simulazione lo stato delle variabili viene simulato o il sistema reagisce ad esso.</td>
</tr>
<tr>
<td>„C“ Compiler</td>
<td>Nativer Code viene supportato.</td>
</tr>
<tr>
<td></td>
<td>Nome del DLL che deve contenere il codice compilato: t5app.dll.</td>
</tr>
</tbody>
</table>

5.4 Runtime

5.4.1 Funzionalità

Il runtime di zenon Logic mette a disposizione le seguenti funzionalità.

- Trasferimento file
- Tipi di dato:
 - BOOL
 - BYTE
 - DINT
 - DWORD
- INT
- LINT
- LREAL
- REAL
- SINT
- STRING
- TIME
- UDINT
- UINT
- USINT
- WORD
- Array di zenon (vedi anche Array e simulazione (A pagina: 20))
- Dato relativo alla data/ dato ora
- Registrazione valori digitale
- Blocchi funzione collegati in modo dinamico, reperibili in t5block*.dll
- Hot restart
- Logging:
 - Segnalazioni Trace del programma (printf)
 - Segnalazioni errore del Runtime
 - Tutte a Workbench e Diagnosis Server
- Codice macchina: Native compiled code con C-Postcompiler (non disponibile per Windows CE)
- Online change
- Linguaggi di programmazione: AWL, AS, FUP, KOP, ST
- Dati Retain (dati ritentivi)
- Blocchi funzioni e features speciali:
 - serializzazione dati
 - Occupazione di memoria dinamica
 - Ricette indipendenti
 - Lista variabile indipendente
 - File Management
 - Files
 - Mathe
• Random
• Segnali
• Tabelle stringe
• Trigonometria
• Ora
 ▶ Comunicazione spontanea:
 • Cambio valori come evento
 • 16 collegamenti
 • Isteresi
 ▶ UDP & TCP/IP per linguaggi IEC
 ▶ Variabili - Interblocco

5.4.2 Array e simulazione

Per simulare array multidimensionali nel contesto di una simulazione driver, dovete attivare nel workbench di zenon Logic la proprietà "Salva variabili complesse in segmento proprio".

ARRAY CON INDICE DI PARTENZA 1

Se, nel corso di una simulazione, ci sono degli array con indice di partenza 1, questi vengono creati nel workbench di zenon Logic con un ulteriore indice.

Esempio

Un array dispone in zenon degli indici da 1 a 4. Questo tipo di array ha, invece, nel workbench di zenon Logic gli indizi da 0 a 4.

In tal modo si assicura che in zenon e in zenon Logic vengano usati gli stessi indici. L’indice 0 non viene trasmesso al driver.

Se cambiate degli array nel workbench di zenon Logic, dovete tener presente questo ulteriore indice.

5.4.3 File Runtime

Al momento della creazione dei file runtime, viene generata nel Cartella Runtime del progetto nel percorso \RT\FILES\zenon\custom\drivers una sottocartella recante il nome del progetto di simulazione. In questa cartella viene depositato il file simulrt.cod con il codice della simulazione.
Nella caso che la compilazione nel workbench e la trasmissione nella cartella runtime abbiano avuto successo, nella finestra di emissione dell’editor apparirà la seguente segnalazione:

SIMULRT.COD

E se si compila con C-Compiler, apparirà inoltre:

TSAPP.DLL

TRASPORTO REMOTO

I file runtime per la simulazione vengono generati come sottocartella dei file del driver. Nel caso del Trasporto Remoto, la sottocartella viene trasmessa con tutti i file in essa contenuti al computer di destinazione.

5.4.4 Scambio dati

Lo scambio dati provenienti dal Runtime di zenon Logic verso il driver inizia con il secondo ciclo del Runtime di zenon Logic. In tal modo, il primo ciclo è a disposizione per inizializzare tutte le variabili nel runtime.

Uno scambio ha luogo solamente se:

- la variabile viene richiesta e:
 - non ha ancora ricevuto nessun valore.
 - nel driver non ha lo stato Spento (OFF/_VSB_N_UPD) oppure Valore di riserva (ALT_VAL/_VSB_AVALUE)
 - è ancora usato dal driver.
 - sono cambiati valore o stato.

Lo scambio dati in direzione del driver avviene in modo asincrono rispetto al ciclo del runtime. Il driver passa in rassegna le modifiche dei valori una volta per ciclo di update. Tutti i valori modificati - fatta eccezione per quelli con lo stato Spento (OFF/_VSB_N_UPD) oppure valore di riserva (ALT_VAL/_VSB_AVALUE) - vengono inseriti nella lista delle variabili da attualizzare nel driver e vengono registrati durante il runtime.

FUNZIONE SIMULAZIONE IMMAGINE DI PROCESSO DEL DRIVER TRASFERITA ALLO STANDBY

Questa funzione viene eseguita solo sul server di standby (per la configurazione vedi capitolo Allineamento ciclico (A pagina: 16)). I dati vengono estratti in modo sincrono dal driver e trasferiti sul server che compila l’immagine. Il driver ha 5 secondi a disposizione per questa operazione. Visto che i dati per l’immagine sono creati nello stesso thread in cui è eseguita la simulazione, si deve garantire che
la simulazione stessa venga espletata nel giro di 5 secondi. Se si supera questo intervallo di tempo, non viene trasmessa nessuna immagine per questo driver.

SIMULAZIONE VALORE

Le modifiche di valore non vengono trasmesse subito, ma sono depositati un un buffer. La grandezza del buffer è pari a 8192 modifiche valore, oppure al quintuplo del numero delle variabili, a seconda di quale valore è più grande. Il ritardo della trasmissione a causa del ciclo del driver può essere di al massimo 100 ms. Se cambia di nuovo il valore di una variabile mentre essa attende di essere trasmessa, tutti i valori non ancora trasmessi durante il runtime vengono depositati subito; solo dopo si prende nota dei nuovi valori. Ciò può provocare un carico più elevato per computer e rete, ma, nel contempo, è garanzia del fatto che tutti i valori vengano trasmessi durante il runtime.

DRIVER COMANDO DI SCRITTURA

Se è stata configurata Simulazione - programmata ed essa è attiva, i comandi di scrittura sullo standby vengono passati fino al runtime.

Le operazioni di scrittura vengono eseguite dal driver in modo asincrono rispetto al runtime. Lo scambio dati ha luogo tramite un buffer. La dimensione del buffer è pari a 8192 modifiche valore, oppure al quintuplo del numero delle variabili, a seconda di quale valore è più grande.

I comandi di scrittura vengono passati attraverso il runtime dopo le modifiche di valore. Se un comando di scrittura non può essere eseguito in modo corretto, viene visualizzata la segnalazione di errore Write queue full! Write command for <DP-Name> lost!.

Se i bit di stato sono attivi, lo stato Scrittura avvenuta con successo indica che il driver è riuscito a scrivere il valore sulla variabile. Il programma Runtime dovrebbe cancellare questo stato dopo aver elaborato il comando di scrittura. Un bit di stato già attivo non ritarda una nuova operazione di scrittura del driver. I comandi di scrittura vengono eseguiti anche quando il programma Runtime è stato interrotto da un punto di interruzione (breakpoint).

Nota: non tutti i comandi di scrittura del driver devono essere visibili nel runtime. Se per una stessa variabile ci sono nel buffer più comandi di scrittura, è visibile nel programma runtime solamente l’ultimo.

DISATTIVA VARIABILE, PASSA A VALORE SOSTITUTIVO.

Se la variabile viene disattivata, oppure se si passa al valore sostitutivo, ciò non è rilevabile per il runtime. Modifiche di valore effettuate con il runtime, non vengono assegnate alle variabili nel driver. Se la variabile passa di nuovo al valore spontaneo oppure viene attivata, anche il valore attuale proveniente dal runtime viene di nuovo trasmesso al driver. Alla disattivazione del valore spontaneo, viene settato il bit di stato OFF; quando si ritorna al valore spontaneo, viene resettato il bit OFF.
5.4.5 Formato dati

DATI RITENTIVI

Dati ritentivi vengono depositati nel file SimulRt<TreiberID>.ret. Per ogni simulazione viene generato un file del genere, sempre che siano presenti delle variabili ritentive. Si tiene conto di questo file al momento del confronto in rete.

DRIVER RITENTIVO

L’impostazione Simulazione - programmata all’avvio del driver non è un criterio per restaurare l’immagine variabile ritentivamanente.

5.4.6 Ridondanza

START SUL SERVER-STANDBY

Se il driver è già attivo sul Server-Standby, dovrebbe essere disponibile anche l’immagine per la simulazione. In questo caso, la simulazione viene avviata "hot" con quest’immagine. In caso di mancanza dell’immagine si verifica un warm start.

FUNZIONE SIMULAZIONE IMMAGINE DI PROCESSO DEL DRIVER TRASFERITA ALLO STANDBY

Questa funzione viene eseguita solo sul server di standby (per la configurazione vedi capitolo Allineamento ciclico (A pagina: 16)). I dati vengono estratti in modo sincrono dal driver e trasferiti sul server che compila l’immagine. Il driver ha 5 secondi a disposizione per questa operazione. Visto che i dati per l’immagine sono creati nello stesso thread in cui è eseguita la simulazione, si deve garantire che la simulazione stessa venga espletata nel giro di 5 secondi. Se si supera questo intervallo di tempo, non viene trasmessa nessuna immagine per questo driver.

ALLINEAMENTO

Oltre ai file di programma della simulazione, vengono sincronizzati anche:

- dati ritentivi (*.ret)
- tutti i file *.simul

Questa parte finale del nome file viene generata dal programma di simulazione per file specifici della simulazione stessa e collocata nella cartella con la denominazione computer sotto a Cartella Runtime.
5.4.7 Stato

SIMULAZIONE STATO

Per quello che concerne la simulazione di stato, in zenon Logic alla voce Progetto -> Parametro di progetto -> Estese -> Compiler -> Opzioni -> deve essere attivo Imposta bit di stato per variabili con profilo. Nel caso in cui lo stato di una variabile venga modificato, si verifica la trasmissione della variabile al driver.

La modifica al seguente stato non causa un aggiornamento del valore nel driver e non viene neanche ripresa dalla simulazione:

- External Real-Time (T_EXTERN/_VSB_RT_E)
- Internal Real-Time (T_INTERN/_VSB_RT_I)
- Ora solare (T_STD/_VSB_WINTER)
- Conferma scrittura (WR_ACK/_VSB_WR_ACK)
- Scrittura avvenuta con successo (WR_SUC/_VSB_WR_SUC)
- Stato normale (NORM/_VSB_NORM)
- Normal deviation (N_NORM/_VSB_ABNORM)
- Seleziona nella rete (NET_SEL/_VSB_SELEC)
- Runtime exceeded (TIMEOUT/_VSB_RTE)
- In costruzione (PROGRESS/_VSB_DIREC)
- Spento (OFF/_VSB_N_UPD)
- Valore di riserva (ALT_VAL/_VSB_AVALUE)

Info

Il bit di stato Scrittura avvenuta con successo (WR_SUC/_VSB_WR_SUC) è disponibile nel programma Runtime può essere resettato per visualizzare la scrittura avvenuta con successo.

Tuttavia, il reset non causa di per sé la trasmissione dal Runtime di zenon. Solo i cambiamenti di valore vengono inviati dal driver al Runtime.

BIT DI STATO TRATTATI IN MODO PARTICOLARE

I seguenti bit di stato si escludono a vicenda:
Simulazione - programmata

<table>
<thead>
<tr>
<th>Bit</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>17: Spontaneo- (SPONT/_VSB_SPONT)</td>
<td>Viene settato lo stato SPONTAN. Lo stato settato è lo stesso anche se il trattamento di stato è disattivato, oppure non è stato definito alcuno stato. Lo stato GI + INVALID viene cancellato.</td>
</tr>
<tr>
<td>18: Non valido- (INVALID/_VSB_I_BIT)</td>
<td>Viene settato lo stato INVALID. Lo stato SPONTAN + GI viene cancellato.</td>
</tr>
<tr>
<td>16: General Interrogation (GI/_VSB_GR)</td>
<td>Viene settato lo stato General Interrogation. Lo stato SPONTAN + INVALID viene cancellato.</td>
</tr>
</tbody>
</table>
| 8: Seleziona nella rete (NET_SEL/_VSB_SELEC) | Se questo bit di stato è attivo (BSO attivazione/disattivazione), per il riconoscimento di una modifica i seguenti bit di stato devono essere pari a 0 e devono essere trasmessi come 0 al driver:
 - Seleziona nella rete (NET_SEL)
 - Causa di trasmissione (COTx)
 - Select (SE_870)
 - N_CONF (P/N-BIT)
 - Test-BIT (TEST)
 - Scrittura avvenuta con successo (WR_SUC) |

SELECT BEFORE OPERATE (SBO)

Perché il sistema reagisca a Select Before Operate, nel programma runtime deve essere disponibile la simulazione di stato. La procedura per Select Before Operate viene fissata nel programma runtime.

ATTIVAZIONE

Se viene inviato al driver un SBO select, ciò provoca per il runtime una scrittura di valore con lo stato Seleziona nella rete (NET_SEL) + Causa di trasferimento (COT_act).

Nel programma Runtime deve essere implementata una corrispondente procedura SBO che verrà avviata.

Il bit di stato Seleziona nella rete (NET_SEL) deve essere resettato nel programma Runtime.

DISATTIVAZIONE

La disattivazione causa una scrittura di valore con lo stato Seleziona nella rete (NET_SEL) + Causa di trasferimento (COT_deact).

Nel programma runtime deve essere terminata la procedura SBO.

Il bit di stato Seleziona nella rete (NET_SEL) deve essere resettato nel programma Runtime.
5.4.8 Start/Stop

PARTENZA DRIVER

L’aggiornamento dei valori inizia sul Server-Standby se il driver ha ricevuto dal suo server l’immagine di processo. L’immagine deve giungere prima della scadenza del timeout del modulo, altrimenti il driver si avvia senza di essa. Se il Server-Standby passa ad essere server prima della scadenza del tempo di attesa, l’attesa stessa termina. I driver che si avviano in un progetto server oppure senza rete, non hanno tempo di attesa. Questo comportamento si verifica sia nel caso di una simulazione che nella modalità hardware.

LANCIARE RUNTIME

Se il driver lancia la Simulazione - programmata, in un primo passo il sistema carica la DLL con il runtime di simulazione. In seguito viene parametrizzato il runtime e il programma runtime si avvia, sempre che sia stato possibile caricarlo con successo.

Se è disponibile un’immagine del runtime, quest’ultimo viene avviato con essa Hot. Altrimenti il sistema esegue un Warm start. Se anche quest’ultimo non risulta possibile, si cerca di lanciare il runtime in modalità Cold Start. Nel caso in cui non sia disponibile alcun programma valido, il runtime si avvia "fermato". Lo stato di tutte le variabili viene settato su INVALID.

Il programma di simulazione funziona in un proprio thread e, perciò, è completamente indipendente dal ciclo driver.

Info

Variabili ritentive

- I dati ritentivi contengono solamente il valore delle variabili di zenon Logic, non il loro stato. Per lo start ciò significa quanto segue:
 - Warm start: lo stato settato per una variabile viene ripristinato - indipendentemente dal fatto se si tratta di una variabile ritentiva o no.
 - Cold start: con variabili ritentive: solo il valore della variabile ritentiva in zenon Logic viene ripristinato, non lo stato.

ARRESTA RUNTIME

Se il runtime viene fermato, viene settato per tutte le variabili lo stato INVALID. Le variabili che vengono richieste mentre il runtime è bloccato, ricevono come inizializzazione lo stato INVALID. Il runtime salva tutti i dati per il warm start e l’online change:

- SIMULRT.HOT: contiene i dati per il riavvio hot.
- SIMULRT.UPD: contiene i dati per l’online change.
Questi due file vengono generati nella cartella del programma runtime. Il runtime deve possedere un’autorizzazione di scrittura relativa a questa cartella.

AGGIORNA PROGETTO RUNTIME

- Nuova compilazione di un progetto di simulazione: fa sì che il driver corrispondente venga caricato di nuovo.
- Modifica del timeout di modulo: il runtime non la riconosce come modifica e non determina il fatto che il driver venga caricato un’altra volta.

L’implementazione standard nel kit driver provoca un hot start del runtime nel momento in cui il progetto di simulazione viene aggiornato. Se ciò non risulta possibile (per esempio perché il programma è diverso), viene eseguito un cold start con retain.

SCARICO DEL RUNTIME

Se il runtime è aperto, esso viene arrestato. Prima di scaricare il runtime, il sistema trasmette tutti gli aggiornamenti di valori in attesa al driver. Solo in seguito il runtime viene reso disponibile e si scarica SimulRuntime.dll sul PC.

5.4.9 **Comandi driver**

I comandi driver servono a influenzare i driver tramite zenon, per esempio avviarli e chiuderli. La progettazione avviene attraverso la funzione Comandi driver.

ARRESTA/AVVIA DRIVER

Se il driver viene terminato nella modalità Simulazione - programmata, ne consegue la chiusura del runtime. Tutte le variabili ricevono lo stato INVALID. Se so riavvia il driver, la simulazione viene ricaricata e il runtime viene avviato.

DRIVER PASSAGGIO HARDWARE/SIMULAZIONE

Nel cambio fra le modalità Hardware e Simulazione, il driver si comporta secondo il seguente schema:

1. se il driver è stato configurato nell’Editor per la modalità hardware:
 - dopo l’esecuzione della funzione comando driver con il parametro Driver in modalità simulazione il driver viene portato nella modalità simulazione - statica.
2. Se il driver è stato configurato nell’Editor per una delle modalità di simulazione (statica, conta, programmata):
 - dopo l’esecuzione della funzione comando driver con il parametro Driver in modalità hardware il driver viene portato nella modalità hardware e comunica con il controllo.
 - il driver ritorna dopo l’esecuzione della funzione comando driver con il parametro Driver in modalità simulazione alla modalità di simulazione configurata.

5.4.10 Assegnazione variabili

L’assegnazione del driver di zenon alle variabili di zenon Logic avviene mediante il nome convertito in lettere maiuscole. Se il runtime di zenon richiede una variabile dal driver, quest’ultimo la inoltra alla simulazione. Se non è caricata nessuna simulazione, la variabile riceve lo stato spento (OFF/VSB_N_UPD) quando il driver è arrestato. Altrimenti quello non valido (INVALID/VSB_I_BIT).

Le variabili del tipo oggetto-driver Variabile del driver non vengono mai richieste dalla simulazione.

5.4.11 Data e ora

Per usare il time stamp, deve essere attivo in zenon Logic l’inserimento Progetto -> Parametri progetto -> Estesi -> Compilatore -> Opzioni -> Imposta bit di stato per variabili con profilo

Se nel programma runtime viene settata la data per una variabile, il valore di data e tempo viene usato come time stamp. Ogni volta che cambia la data o l’ora di una variabile durante l’ultimo ciclo, questa modifica attiva sempre una trasmissione dei valori al driver. Ciò vale anche nel caso in cui non siano cambiati né valore né stato.

La maggior parte dei driver trasmettono un nuovo time stamp al runtime solo quando cambiano contemporaneamente anche valore e/o stato. Un’eccezione, però, è rappresentata, per esempio, dai driver IEC870, che trasmettono nuovi time stamps al runtime dall’hardware (oppure Simulazione - programmata) con lo stesso valore o lo stesso stato.

Alle variabili che hanno ricevuto uno stamp dal programma runtime viene attribuito lo stato Tempo reale esterno (T_EXTERN/VSB_RT_E).
Tutte le variabili trasmesse al driver che non hanno ricevuto uno stamp dal runtime, ottengono durante il ciclo un time stamp comune. In tal modo si assicura che il tempo corrisponda a quello della modifica. Questi driver ottengono lo stato Tempo reale interno \(T\text{INTERN/}_VSB\text{RT}_I \).

DATA & TEMPO

Per tutte le informazioni concernenti data e tempo vale quanto segue:

- i tempi corrispondono a UTC.
- Tutti i tempi devono essere compresi fra 02. 01. 1970 e 2038.
- La conversione della data in una stringa avviene nel formato YYYY/MM/DD.
- Il tempo viene convertito nel formato HH:MM:SS.

5.5 Indicazioni sulle variabili in progetti di simulazione

Se si vogliono creare e modificare delle variabili in progetti di simulazione, vale quanto segue:

1. **zenon Logic**

 Se le variabili per un progetto di simulazione vengono create nel workbench di zenon Logic, esse non dispongono ancora di un indirizzamento valido per la comunicazione. Se si passa alla comunicazione hardware, essa può essere interrotta se le nuove variabili vengono usate in immagini senza un indirizzamento adeguato in modo corretto.

2. **Rinomina**

 Se una variabile di un progetto di simulazione viene rinominata, cambia in modo corrispondente anche il nome della variabile in zenon. Così, ad esempio, i nomi delle variabili che vengono usate in un progetto VBA, devono essere adeguate anche nel codice VBA.

3. **Soluzioni integrata**

 Variabili di soluzioni integrate come zenon Logic, IEC 870 oppure IEC 850, non possono essere rinominate nel progetto di simulazione. In questo caso, le variabili perdono le loro informazioni di progetto.

 Ad esempio: se nel progetto di simulazione `Project0/Global/NewVar` viene rinominata in `myNeVariablenwVar`, essa diviene in zenon `myNewVar`. Dopo la rinomina, la comunicazione con il Runtime di zenon Logic è impossibile.

4. **La comunicazione si basa sul nome variabile**

 Le variabili di un driver che comunica sulla base di nomi variabili, non possono essere rinominate nel progetto di simulazione.

5. **Cancella o importa variabili**

 Quando si cancella o importa una variabile quando in zenon Logic è attivo online change, tutte le variabili vengono rimosse e poi inserite di nuovo in zenon Logic.
6. **Variabili con simbolo "embed" attivo**

Le variabili presenti in un programma e il cui simbolo "embed" è stato attivato, non sono accessibili tramite l’interfaccia Shared Memory in zenon. Se una variabile con simbolo "embed" attivo viene spostata dall’area globale in un programma, essa viene cancellata in zenon.

5.6 Messaggi d'errore

Le segnalazioni di errore nell’Editor di zenon:

<table>
<thead>
<tr>
<th>Messaggio di errore</th>
<th>Causa e soluzione</th>
</tr>
</thead>
</table>
| Il nome selezionato è già utilizzato da un altro driver o contiene caratteri non validi. Selezionare un altro nome. | Il nuovo nome del progetto di simulazione viene usato già nel progetto oppure non è valido.
 ▶ Assegname un nome valido. |
| Il progetto di simulazione del driver `<Nome file>/<Denominazione>` non è compilato e perciò non può essere usato! Compilare il progetto nel Workbench. | Per il driver in questione c’è un progetto di simulazione. Esso, però, non è stato compilato.
 ▶ Avviare il workbench di zenon Logic con il progetto di simulazione di questo driver.
 ▶ Compilare il progetto
 Suggerimento: Non fa alcuna differenza se nelle impostazioni driver la simulazione è settata su **Simulazione - programmata**. |
| Write queue full! Write command for `<Name Variable>` lost! | Indica la perdita di un comando di scrittura. |